Math, asked by sambasivaraothoka078, 5 months ago

Example-4. In AABC, right angle is at B, AB=5 cm and ZACB=30°. Determine the lengths
of the sides BC and AC.​

Answers

Answered by Itzraisingstar
21

\huge\fcolorbox{black}{lime}{AnsweR:}

BC = 5√3cm

AC = 10cm

Given:

∠ABC = 90°

∠ACB = 30°

AB = 5cm

To Find:

BC and AC

Solution:

Finding AC

\bold{sin\:30^*=\frac{AB}{AC} }

\bold{\frac{1}{2}=\frac{5}{AC}  }

AC = 10cm

Finding BC

\large\bold{cos\\:30^*=\frac{BC}{AC}, }\\\\\bold{\frac{\sqrt{3} }{2}=\frac{BC}{10}  }\\\\\bold{2BC=10\sqrt{3} }\\\\\bold{BC=\frac{10\sqrt{x} }{2}. }\\\\\bold{BC=5\sqrt{3}. }

Attachments:
Answered by Anonymous
14

\huge\fcolorbox{black}{lime}{AnsweR:}

BC = 5√3cm

AC = 10cm

Given:

∠ABC = 90°

∠ACB = 30°

AB = 5cm

To Find:

BC and AC

Solution:

Finding AC

\bold{sin\:30^*=\frac{AB}{AC} }sin30

=

AC

AB

\bold{\frac{1}{2}=\frac{5}{AC} }

2

1

=

AC

5

AC = 10cm

\boxed{\huge \star{{\mathfrak{\red{☠Hãrshü \: : hêrë☠}\star}}}}

Similar questions