Physics, asked by manojindia0077, 7 months ago

Example 5.11 A circular racetrack of
radius 300 m is banked at an angle of 15°
If the coefficient of friction between the
wheels of a race-car and the road is 0.2
what is the (a) optimum speed of the race-
car to avoid wear and tear on its tyres, and
(b) maximum permissible speed to avoid
slipping?​

Answers

Answered by amansharma264
50

EXPLANATION.

 \sf :  \implies \: a \: circular \: race \: track \: of \: 300m \:  \\  \\ \sf :  \implies \: banked \: at \: an \: angle \: of \: 15 \degree \\  \\   \sf :  \implies \: coefficient \: of \: friction \: between \: the \: wheels \: of \: race \: car \: and \: road = 0.2 \\  \\  \sf :  \implies \:  \mu \:  = 0.2

 \sf :  \implies \:  \orange{{ \underline{1) = optimum \: speed \: of \: race \: car \: to \: avoid \: wear \: and \: tear \: on \: its \: tires \: }}} \\  \\  \sf :  \implies \:  \tan( \theta)  =  \frac{ {v}^{2} }{rg} \\  \\   \sf :  \implies \:  {v}^{2}  = rg \tan( \theta) \\  \\   \sf :  \implies \:  {v}^{2}  = 300 \times 10 \times  \tan(15 \degree)  \\  \\  \sf :  \implies \:  {v}^{2}  = 300 \times 10 \times 0.26 \\  \\  \sf :  \implies \:  {v}^{2} = 780  \\  \\  \sf :  \implies \: v \:  =  \sqrt{780}  \approx \: 28

 \sf :  \implies \:  \orange{{ \underline{2) = maximum \: permissible \: speed \: to \: avoid \: slipping}}} \\  \\  \sf :  \implies \:  v_{m} \:  =  \sqrt{Rg \: ( \frac{ \mu \:  +  \tan( \theta) }{1 -  \mu \:  \tan( \theta) } }) \\  \\  \sf :  \implies \:  v_{m} \:  =  \sqrt{300 \times 10( \frac{0.2 \times  \tan(15 \degree) }{1 - 0.2 \tan( 15 \degree) } }  ) \\  \\ \sf :  \implies \:  v_{m} \:  =  \sqrt{3000( \frac{0.2 \times 0.26}{1 - 0.2 \times 0.26} } ) \\  \\ \sf :  \implies \:  v_{m} \:  =  \sqrt{1458.7} = 38.19 \: ms {}^{ - 1}

Answered by rocky200216
53

\huge\bf{\underbrace{\gray{GIVEN:-}}}

  • A circular racetrack of radius 300 m .

  • The circular racetrack is banked at an angle of 15° .

  • If the coefficient of friction between the wheels of a race-car and the road is 0.2 .

\huge\bf{\underbrace{\gray{TO\:FIND:-}}}

  1. The optimum speed of the race car to avoid wear and tear on its tyres .
  2. The maximum permissible speed to avoid slipping .

\huge\bf{\underbrace{\gray{SOLUTION:-}}}

(1) Optimum speed of car is,

\orange\bigstar\:\bf{\gray{\overbrace{\underbrace{\purple{\tan{\theta}\:=\:\dfrac{v^2}{rg}\:}}}}} \\

\bf\pink{:\implies\:v^2\:=\:rg\:\tan{\theta}\:} \\

Where,

  • \bf\red{v} = Speed of car

  • \bf\red{r} = Radius

  • \bf\red{g} = gravitational acceleration

  • \bf\red{\theta} = Banking of racetrack

☯︎ According to the question,

  • \bf\red{r} = 300 m

  • \bf\red{g} = 10 m/s²

  • \bf\red{\theta} = 15°

\rm{:\implies\:v^2\:=\:300\times{10}\:\times{\tan{15{\degree}}}\:} \\

\rm{:\implies\:v^2\:=\:780\:} \\

\rm{:\implies\:v\:=\:\sqrt{780}\:} \\

\bf\green{:\implies\:v\:=\:27.9\:m/s\:\:\approx\:28\:m/s\:} \\

\huge\red\therefore The optimum speed of the race car to avoid wear and tear on its tyres is "28 m/s" .

__________________________

(2) Maximum permissible speed to avoid slipping is,

\blue\bigstar\:\bf{\gray{\overbrace{\underbrace{\purple{v_m\:=\:\sqrt{rg\:\Big(\dfrac{\mu\:+\:\tan{\theta}}{1\:-\:\mu\:\tan{\theta}}\Big)}\:}}}}} \\

Where,

  • \bf\red{\mu} = 0.2

\rm{:\implies\:v_m\:=\:\sqrt{300\times{10}\:\Big(\dfrac{0.2\:+\:\tan{15^{\degree}}}{1\:-\:0.2\times{\tan{15^{\degree}}}}\Big)}\:} \\

\rm{:\implies\:v_m\:=\:\sqrt{1458.7}\:} \\

\bf\green{:\implies\:v_m\:=\:38.19\:m/s\:} \\

\huge\red\therefore The maximum permissible speed to avoid slipping is "38.19 m/s" .

Similar questions