Physics, asked by ronak860398, 5 months ago

Example 6.6 A block of mass m = 1 kg,
moving on a horizontal surface with speed
v = 2 m s' enters a rough patch ranging
from x=0.10 m to x=2.01 m. The retarding
force F on the block in this range is inversely
proportional to x over this range,
-k
F = - for 0.1<x< 2.01 m
X
= 0 for x < 0.1m and x > 2.01 m
where l = 0.5 J. What is the final kinetic
energy and speed y, of the block as it
crosses this patch ?​

Attachments:

Answers

Answered by shadowsabers03
14

The initial kinetic energy,

\sf{\longrightarrow K_i=\dfrac{1}{2}\,m(v_i)^2}

\sf{\longrightarrow K_i=\dfrac{1}{2}\cdot1 (2)^2}

\sf{\longrightarrow K_i=2\ J}

By work - energy theorem, the work done on the block when it moves along the patch is equal to change in kinetic energy.

\sf{\longrightarrow K_f-K_i=W}

\displaystyle\sf{\longrightarrow K_f-K_i=\int\limits_{0.10}^{2.01}F_r\ dx}

\displaystyle\sf{\longrightarrow K_f-K_i=-k\int\limits_{0.10}^{2.01}\dfrac{1}{x}\ dx}

\displaystyle\sf{\longrightarrow K_f-K_i=-k\Big[\log x\Big]_{0.10}^{2.01}}

\displaystyle\sf{\longrightarrow K_f-2=-0.5\cdot\log\left(\dfrac{2.01}{0.10}\right)}

\displaystyle\sf{\longrightarrow K_f-2=-0.5\log(20.1)}

\displaystyle\sf{\longrightarrow K_f= 2-0.5\times3}

\displaystyle\sf{\longrightarrow\underline{\underline{K_f=0.5\ J }}}

Answered by Anonymous
6

\huge{\underline{\bold{\green{ANSWER}}}}

The initial kinetic energy,

\sf{\longrightarrow K_i=\dfrac{1}{2}\,m(v_i)^2}

\sf{\longrightarrow K_i=\dfrac{1}{2}\cdot1 (2)^2}

\sf{\longrightarrow K_i=2\ J}

By work - energy theorem, the work done on the block when it moves along the patch is equal to change in kinetic energy.

\sf{\longrightarrow K_f-K_i=W}

\displaystyle\sf{\longrightarrow K_f-K_i=\int\limits_{0.10}^{2.01}F_r\ dx}

\displaystyle\sf{\longrightarrow K_f-K_i=-k\int\limits_{0.10}^{2.01}\dfrac{1}{x}\ dx}

\displaystyle\sf{\longrightarrow K_f-K_i=-k\Big[\log x\Big]_{0.10}^{2.01}}

\displaystyle\sf{\longrightarrow K_f-2=-0.5\cdot\log\left(\dfrac{2.01}{0.10}\right)}

\displaystyle\sf{\longrightarrow K_f-2=-0.5\log(20.1)}

\displaystyle\sf{\longrightarrow K_f= 2-0.5\times3}

\displaystyle\sf{\longrightarrow\underline{\underline{K_f=0.5\ J }}}

Similar questions