Math, asked by shubhampatil4468992, 6 months ago

Example 6. If m cot A = n, find the value of
msin A – ncos A
ncos A + msin A​

Answers

Answered by arpitmishrakash
0

Answer:

mcot A = n

m = n/cotA

m = ntanA......(i)

(a) msinA - ncosA = msinA - mcotA(cosA)

= msinA - (mcosA(cosA))/sinA

= msinA - mcos^2A/sinA

= (msin^2A - mcos^2A)/sinA

=( msin^2A - m + msin^2A)/sinA

= 2msin^2A -m /sinA

= 2msinA - mcosec

(b) ncos A + msinA = mcotA(cosA) + msinA

= mcos^2A/sinA + msinA

= (mcos^2A+ msin^2A)/sinA

= 1/sinA = cosecA

(msinA - ncosA)/ncosA + msinA = 2msinA-mcosecA/cosecA = 2msinA×cosecA -mcosecA/cosecA = 2m - m= m

Similar questions