Example 6. If m cot A = n, find the value of
msin A – ncos A
ncos A + msin A
Answers
Answered by
0
Answer:
mcot A = n
m = n/cotA
m = ntanA......(i)
(a) msinA - ncosA = msinA - mcotA(cosA)
= msinA - (mcosA(cosA))/sinA
= msinA - mcos^2A/sinA
= (msin^2A - mcos^2A)/sinA
=( msin^2A - m + msin^2A)/sinA
= 2msin^2A -m /sinA
= 2msinA - mcosec
(b) ncos A + msinA = mcotA(cosA) + msinA
= mcos^2A/sinA + msinA
= (mcos^2A+ msin^2A)/sinA
= 1/sinA = cosecA
(msinA - ncosA)/ncosA + msinA = 2msinA-mcosecA/cosecA = 2msinA×cosecA -mcosecA/cosecA = 2m - m= m
Similar questions