Math, asked by Draviddesh, 2 months ago

Example 6 Prove that
2.7" + 3.5" - 5 is divisible by 24, for all ne N.​

Answers

Answered by diptimayeemahanta52
1

Answer:

I hope this will helpful to you

Attachments:
Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Let assume that

\rm :\longmapsto\:P(n) :  {2.7}^{n} +  {3.5}^{n} - 5 \: is \: divisible \: by \: 24

where n is a natural number.

Step :- 1 For n = 1

\rm :\longmapsto\:P(1) :  {2.7}^{1} +  {3.5}^{1} - 5 \:

\rm \:  =  \:14 + 15 - 5

\rm \:  =  \:29 - 5

\rm \:  =  \:24

\bf\implies \:P(n) \: is \: true \: for \: n = 1

Step :- 2 Assume that P(n) is true for n = k

[ where k is some natural number ]

\rm :\longmapsto\:P(k) :  {2.7}^{k} +  {3.5}^{k} - 5 \: is \: divisible \: by \: 24

\rm :\longmapsto\:{2.7}^{k} +  {3.5}^{k} - 5 \: = 24m

\rm :\longmapsto\:{2.7}^{k}  = 24m -   {3.5}^{k}  +  5 \: -  -  - (1)

Step :- 3 We have to prove that P(n) is true for n = k + 1

\rm :\longmapsto\:{2.7}^{k + 1} +  {3.5}^{k + 1} - 5 \:

\rm \:  =  \:{2.7}^{k}.7 +  {3.5 }^{k}.5 - 5 \:

\rm \:  =  \:(24m -  {3.5}^{k} + 5).7 + 15. {5}^{k} - 5

[ using equation (1) ]

\rm \:  =  \:168m -  {21.5}^{k} + 35 + 15. {5}^{k} - 5

\rm \:  =  \:168m -  {6.5}^{k} + 30

\rm \:  =  \:168m -  6({5}^{k} - 5)  -  -  - (2)

[ Now, we have to prove that

 \red{\rm :\longmapsto\: P(k): {5}^{k} - 1 \: is \: divisible \: by \: 4}

For k = m, Assume that P(k) is true

 \red{\rm :\longmapsto\: {5}^{m} - 1 \: is \: divisible \: by \: 4}

 \red{\rm :\longmapsto\: {5}^{m} - 1  = 4p}

 \red{\rm :\longmapsto\: {5}^{m}   = 4p + 1}

For k = m + 1, we have to prove that P(k) is true.

 \red{\rm :\longmapsto\: {5}^{m + 1} - 1}

 \red{\rm :\longmapsto\: {5}^{m}.5 - 1}

 \red{\rm :\longmapsto\: (4p + 1)5 - 1}

 \red{\rm :\longmapsto\: 20p + 5 - 1}

 \red{\rm :\longmapsto\: 20p + 4}

 \red{\rm :\longmapsto\: 4(5p + 1)}

Thus, P(k) is true by Process of Principal Induction]

So,

Equation (2) can be rewritten as

\rm \:  =  \:168m -  6(4n)

\rm \:  =  \:168m -  24n

\rm \:  =  \:24(7m -  n)

\bf\implies \:P(n) \: is \: true \: for \: n = k + 1

Hence,

By the Process of Principal of Mathematical Induction,

\rm :\longmapsto\:P(n) :  {2.7}^{n} +  {3.5}^{n} - 5 \: is \: divisible \: by \: 24

Similar questions