Math, asked by 23mukul200541, 10 months ago

Example 8: Find the roots of the equation 5x? - 6x - 2 = 0 by the method of completing
the square

Answers

Answered by Anonymous
25

 \large\bf\underline{Given:-}

p(x) = 5x² - 6x -2 = 0

 \large\bf\underline {To \: find:-}

  • root's of the given equation by completing the square method

 \huge\bf\underline{Solution:-}

  • equation :- 5x² - 6x -2 = 0

Divide both side of equation by 5.

 \rm \longmapsto \:  \frac{ {5x}^{2} }{5}  -  \frac{6x}{5}  -  \frac{2}{5}  =  \frac{0}{5}  \\  \\ \rm \longmapsto \: {x}^{2}  -  \frac{6x}{5}  -  \frac{2}{5}  = 0 \\  \\ \rm \longmapsto \:  {x}^{2}  -  \frac{6x}{5}  =  \frac{2}{5}

Add (6/10)² = (3/5)²on both sides of the equation.

\rm \longmapsto \:  {x}^{2}  -  \frac{6x}{5}  +  \frac{9}{25}  =  \frac{2}{5}  +  \frac{9}{25}  \\  \\ \rm \longmapsto \:( x +  \frac{3}{5} ) {}^{2}  =  \frac{10 + 9}{25}  \\  \\ \rm \longmapsto \: (x +  \frac{3}{5} ) {}^{2}  =  \frac{19}{25} \\  \\  \rm \longmapsto \: x +  \frac{3}{5}  =  \sqrt{ \frac{19}{25} }  \\  \\ \rm \longmapsto \: x =  \frac{ \pm \sqrt{ 19} }{5}  -  \frac{3}{5}  \\  \\ \rm \longmapsto \: x =  \frac{ \sqrt{19} - 3 }{5}  \: or \: x =  \frac{ - ( \sqrt{19}   + 3)}{5}

So ,the roots of the given equation are as :-

 \bf \: x =  \frac{ \sqrt { 19 }- 3}{5}  \: or \: x =  \frac{ - ( \sqrt{19}  + 3) }{5}

Answered by Anonymous
24

\sf\blue{Correct \ question}

\sf{Find \ the \ roots \ of \ the \ equation}

\sf{5x^{2}-6x-2=0 \ by \ the \ method \ of}

\sf{completing \ the \ square.}

___________________________________

\sf\red{\underline{\underline{Answer:}}}

\sf{\frac{-3+\sqrt19}{5} \ and \ \frac{-3-\sqrt19}{5} \ are \ the \ roots \ of \ the \ equation.}

\sf\orange{\underline{\underline{Given:}}}

\sf{The \ given \ quadratic \ equation \ is}

\sf{\implies{5x^{2}-6x-2=0}}

\sf\pink{To \ find:}

\sf{Roots \ of \ the \ equation.}

\sf\green{\underline{\underline{Solution:}}}

\sf{The \ given \ quadratic \ equation \ is}

\sf{\implies{5x^{2}-6x-2=0}}

\sf{Divide \ the \ equation \ through \ by \ 5}

\sf{\implies{x^{2}-\frac{6x}{5}-\frac{2}{5}=0}}

\sf{\implies{x^{2}-\frac{6x}{5}=\frac{2}{5}}}

__________________________________

\sf{(\frac{1}{2}\times \ Coefficient \ of \ x)^{2}}

\sf{\implies{(\frac{1}{2}\times\frac{6}{5})^{2}}}

\sf{\implies{(\frac{3}{5})^{2}}}

\sf{\implies{\frac{9}{25}}}

________________________________

\sf{Add \ \frac{9}{25} \ on \ both \ sides \ of \ the \ equation}

\sf{\implies{x^{2}+\frac{6x}{5}+\frac{9}{25}=\frac{2}{5}+\frac{9}{25}}}

\sf{\implies{x^{2}+\frac{6x}{5}+\frac{9}{25}=\frac{10+9}{25}}}

\sf{\implies{(x+\frac{3}{5})^{2}=\frac{19}{25}}}

\sf{On \ taking \ square \ root \ of \ both \ sides}

\sf{\implies{x+\frac{3}{5}=\frac{\sqrt19}{5} \ or \ -\frac{\sqrt19}{5}}}

\sf{\implies{x=\frac{-3}{5}+\frac{\sqrt19}{5} \ or \ \frac{-3}{5}-\frac{\sqrt19}{5}}}

\sf{\implies{x=\frac{-3+\sqrt19}{5} \ or \ \frac{-3-\sqrt19}{5}}}

\sf\purple{\tt{\therefore{\frac{-3+\sqrt19}{5} \ and \ \frac{-3-\sqrt19}{5} \ are \ the \ roots \ of \ the \ equation.}}}

Similar questions