example of cube binomial with solution
Answers
Answer:
( x + 5y)^3 + (x – 5y)^3
- Solution :- We know, (a + b)3 = a3 + 3a2b + 3ab2 + b3
and,
(a – b)3 = a3 – 3a2b + 3ab2 – b3
Here, a = x and b = 5y
Now using the formulas for cube of two binomials we get,
= x3 + 3.x2.5y + 3.x.(5y)2 + (5y)3 + x3 - 3.x2.5y + 3.x.(5y)2 - (5y)3
= x3 + 15x2y + 75xy2 + 125 y3 + x3 - 15x2y + 75xy2 - 125 y3
= 2x3 + 150xy2
Therefore, (x + 5y)3 + (x – 5y)3 = 2x3 + 150xy2
Answer:
Worked-out examples for the expansion of cube of a binomial:
Simplify the following by cubing:
1. (x + 5y)3 + (x – 5y)3
Solution:
We know, (a + b)3 = a3 + 3a2b + 3ab2 + b3
and,
(a – b)3 = a3 – 3a2b + 3ab2 – b3
Here, a = x and b = 5y
Now using the formulas for cube of two binomials we get,
= x3 + 3.x2.5y + 3.x.(5y)2 + (5y)3 + x3 - 3.x2.5y + 3.x.(5y)2 - (5y)3
= x3 + 15x2y + 75xy2 + 125 y3 + x3 - 15x2y + 75xy2 - 125 y3
= 2x3 + 150xy2
Therefore, (x + 5y)3 + (x – 5y)3 = 2x3 + 150xy2
2. (12x+32y)3+(12x−32y)3
Solution:
Here a = 12x,b=32y
=(12x)3+3⋅(12x)2⋅32y+3⋅12x⋅(32y)2+(32y)3+(12x)3−3⋅(12x)2⋅32y+3⋅12x⋅(32y)2−(32y)3
=18x3+98x2y+278xy2+278y3+18x3−98x2y+278xy2−278y3
=18x3+18x3+278xy2+278xy2
=14x3+274xy2
Therefore,
(12x+32y)3+(12x−32y)3=14x3+274xy2
3. (2 – 3x)3 – (5 + 3x)3
Solution:
(2 – 3x)3 – (5 + 3x)3
= {23 - 3.22.(3x) + 3.2.(3x)2 - (3x)3} – {53 + 3.52.(3x) + 3.5.(3x)2 + (3x)3}
= {8 – 36x + 54 x2 - 27 x3} – {125 + 225x + 135x2 + 27 x3}
= 8 – 36x + 54 x2 - 27 x3 – 125 - 225x - 135x2 - 27 x3
= 8 – 125 – 36x - 225x + 54 x2 - 135x2 - 27 x3 - 27 x3
= -117 – 261x - 81 x2 - 54 x3
Therefore, (2 – 3x)3 – (5 + 3x)3 = -117 – 261x - 81 x2 - 54 x3