Math, asked by ridafatimaaaa29, 4 days ago

Example secx Differentiate f (x) = secx/ 1+tan x​

Answers

Answered by crazybot007
1

 \sf { \tt{ \bold{\huge{ \fbox{ \fbox{ \fbox{ \fbox{ Answer}}}}}}}}

\pink{ \tt{ \implies \: f^{1} (x) =  \frac{( 1+  tan \: x) \frac{d}{dx}  (sec \: x) - sec \: x \frac{d}{dx}(1 +tan \: x)  }{(1 +  { \tan \: x})^{2} } }}

{ \tt{ \implies \: \frac{sec \: x(tan \: x - 1)}{(1 + tan) {}^{2} }  }}

 { \tt{ \implies \frac{(1 +  \: tan \: x)sec \: x \: tan \: x \:  - sec \: x \times  {sec}^{2} \: x }{(1 +  {tan \: x})^{2} } }}

{ \tt{  \implies\frac{sec \: x \: (tan \: x + ta {n}^{2} x - sec^{2}x) }{(1 + tan \: s){}^{2} } }}

</strong><strong>{ \tt{ \implies \:  \frac{sec \: x(tan \: x - 1)}{(1 +  \: tan  \: {x})^{2} } }}</strong><strong>

Here's your answer

Similar questions