examples of pressure in gas in daily life
Answers
Answered by
2
OPENING A SODA CAN.
Inside a can or bottle of carbonated soda is carbon dioxide gas (CO 2 ), most of which is dissolved in the drink itself. But some of it is in the space (sometimes referred to as "head space") that makes up the difference between the volume of the soft drink and the volume of the container.
At the bottling plant, the soda manufacturer adds high-pressure carbon dioxide to the head space in order to ensure that more CO 2 will be absorbed into the soda itself. This is in accordance with Henry's law: the amount of gas (in this case CO 2 ) dissolved in the liquid (soda) is directly proportional to the partial pressure of the gas above the surface of the solution—that is, the CO 2 in the head space. The higher the pressure of the CO 2 in the head space, the greater the amount of CO 2 in the drink itself; and the greater the CO 2 in the drink, the greater the "fizz" of the soda.
Once the container is opened, the pressure in the head space drops dramatically. Once again, Henry's law indicates that this drop in pressure will be reflected by a corresponding drop in the amount of CO 2 dissolved in the soda. Over a period of time, the soda will release that gas, and will eventually go "flat."
Inside a can or bottle of carbonated soda is carbon dioxide gas (CO 2 ), most of which is dissolved in the drink itself. But some of it is in the space (sometimes referred to as "head space") that makes up the difference between the volume of the soft drink and the volume of the container.
At the bottling plant, the soda manufacturer adds high-pressure carbon dioxide to the head space in order to ensure that more CO 2 will be absorbed into the soda itself. This is in accordance with Henry's law: the amount of gas (in this case CO 2 ) dissolved in the liquid (soda) is directly proportional to the partial pressure of the gas above the surface of the solution—that is, the CO 2 in the head space. The higher the pressure of the CO 2 in the head space, the greater the amount of CO 2 in the drink itself; and the greater the CO 2 in the drink, the greater the "fizz" of the soda.
Once the container is opened, the pressure in the head space drops dramatically. Once again, Henry's law indicates that this drop in pressure will be reflected by a corresponding drop in the amount of CO 2 dissolved in the soda. Over a period of time, the soda will release that gas, and will eventually go "flat."
okphy:
can you give some more points
Answered by
0
Answer:
1. Opening the cap of a bottle.
2. Aircraft fly because of air pressure on their wings.
3. When you leave a balloon the air inside gets out and the balloon shrinks.
4. When you press the rubber most of the air between its cup and the surface escapes out. This is because of the pressure of atmosphere acts on it.
Similar questions