Math, asked by moushumidas142, 5 months ago

EXERCI
Solve each of the following equations and check the
result
⅔x + 1=7/3​

Answers

Answered by MarkAsBrainliest
2

Step-by-step explanation:

The given equation is:

\quad\frac{2}{3}x+1=\frac{7}{3}

Subtract 1 from both sides:

\quad\frac{2}{3}x+1-1=\frac{7}{3}-1

\Rightarrow \frac{2}{3}x=\frac{7-3}{3}

\Rightarrow \frac{2}{3}x=\frac{4}{3}

Multiply \frac{3}{2} to both sides:

\quad \frac{2}{3}\times\frac{3}{2}x=\frac{4}{3}\times\frac{3}{2}

\Rightarrow x=2

Thus the required solution is x=2.

Check step:

Put x=2 to the left hand side of the given equation:

\quad\frac{2}{3}\times 2+1

=\frac{4}{3}+1

=\frac{4+3}{3}

=\frac{7}{3}

This satisfies the given equation.

Answer: required solution is \mathrm{x=2}.

Answered by Legend42
10

Answer:

{\huge{\boxed{\tt{\color{red}{Answer}}}}}

The given equestion is:

 \frac{2}{3} x + 1 =  \frac{7}{3}

Subtract 1 from both sides

 \frac{2}{3} x  \cancel+ 1  \cancel - 1 =  \frac{7}{3}  - 1 \\  \frac{2}{3} x =  \frac{7 - 3}{3}  \\⟹\frac{2}{3} x =  \frac{4}{3}

Multiply 3/2 in both sides

 \frac{ \cancel2}{ \cancel3}  \times  \frac{ \cancel3}{ \cancel2} x =  \frac{ \cancel4 ^{2} }{ \cancel3}  \times  \frac{ \cancel3}{ \cancel2}  \\ \orange\star\blue{\boxed {x = 2}} \orange \star

Check

Put x=2 in LHS

 \frac{2}{3} x + 1 \\  \rightarrow  \frac{2}{3}  \times 2 + 1 \\\rightarrow \:  \frac{4}{3}  + 1 \\  \rightarrow \frac{4 + 3}{3}  \\  \rightarrow \frac{7}{3}  = RHS

The required solution = 2

___________________________________

https://brainly.in/question/32099296

 {\mathbb{\colorbox {orange} {\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {blue} {\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {aqua} {@Legend42}}}}}}}}}}}}}}}

Similar questions