English, asked by sanjeev1511970, 9 months ago

Exercise 16.2
1) Compute the following, Give the answer in
the exponential form,
(i) 2x2
(ii) (-3)" x (-3)
3
(iv)
w) 65")*61)
X
4
4
(vi) (-3)+(-3)
(v) 3+3
3
2.
(vii)
2 5
(viii)
5
(ix) 3 + 3%
(x) (-3)+(-3)
2
2
() (f) - €)
1
(xii)
5
4​

Answers

Answered by anushaBBPS
0

Answer:swer:

(i) 26 = 2 * 2 * 2 * 2 * 2 * 2 = 64

(ii) 93 = 9 * 9 * 9 = 729

(iii) 112 = 11 * 11 = 121

(iv) 54 = 5 * 5 * 5 * 5 = 625

 

Question 2:

Express the following in exponential form:

(i) 6 * 6 * 6 * 6 (ii) t * t  (iii) b * b * b * b (iv) 5 * 5 * 7 * 7 * 7 (v) 2 * 2 * a * a

(vi) a * a * a * c * c * c * c  * d

Answer:

(i) 6 * 6 * 6 * 6 = 64

(ii) t * t = t2

(iii) b * b * b * b = b4

(iv) 5 * 5 * 7 * 7 * 7 = 52 * 73

(v) 2 * 2 * a * a = 22 * a2

(vi) a * a * a * c * c * c * c  * d = a3 * c4 * d

 

Question 3:

Express each of the following numbers using exponential notations:

(i) 512          (ii) 343            (iii) 729             (iv) 3125

Answer:

(i) 512 = 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 = 29

   Class_7_Exponents_&_Powers_Primefactorization_of_512                                                                                

(ii) 343 = 7 * 7 * 7 = 73

   Class_7_Exponents_&_Powers_Primefactorization_of_343                                                                                

(iii) 729 = 3 * 3 * 3 * 3 * 3 * 3 = 36

  Class_7_Exponents_&_Powers_Primefactorization_of_729                                                                                

(iv) 3125 = 5 * 5 * 5 * 5 * 5 = 55

 Class_7_Exponents_&_Powers_Primefactorization_of_3125                                                                                  

Question 4:

Identify the greater number, wherever possible, in each of the following:

(i) 43 and 34       (ii) 53 or 35    (iii) 28 or 82     (iv) 1002 or 2100       (v) 210 or 102

Answer:

(i) 43 = 4 * 4 * 4 = 64

   34 = 3 * 3 * 3 * 3 = 81  

Since 64 < 81

So, 34 is greater than 43

(ii) 53 = 5 * 5 * 5 = 125

    35 = 3 * 3 * 3 * 3 * 3 = 243

Since 125 < 243

So, 35 is greater than 53  

(iii) 28 = 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 = 256

      82 = 8 * 8 = 64

Since, 256 > 64

Thus, 28 is greater than 82

(iv) 1002 = 100 * 100 = 10,000

      2100 = 2 * 2 * 2 * 2 * 2 * …..14 times * ……… * 2 = 16,384 * ….. * 2

Since, 10,000 < 16,384 * ……. * 2

Explanation:

Similar questions