Math, asked by seemaanand89, 9 months ago

EXERCISE 16.2
1. Find the perimeter and area of an isosceles triangle ABC, with base BC = 6 cm and
side AB = side AC = 5 cm. Area prob.​

Answers

Answered by VedikaSankurwar
2

Answer:

perimeter =16 cm

area =12 cm^2

Answered by Anonymous
5

Given :-

  • The sides is an Isoceles ∆ i.e., AB = BC = 5cm. and BC (base) = 6cm.

To find :-

  • The perimeter and area of the Isoceles ∆.

Solution :-

  \sf {\underline{✯ Perimeter \:  of an  \: Isoceles  \: ∆ :- (2a + b).}}

  •  \bf \: Here \:  2a  \: refers \:  to  \: the  \: equal  \: sides  \: of \:  the  \: ∆ \\   \sf i.e., \:  (2 \times 5 + 6)</li><li> \\  \sf \:  = 16cm
  •   \sf \:{\boxed{\boxed{  \sf perimeter \: of \: the \:  \triangle \: is \: 16cm.}}}

  \sf {\underline{✯ Area\:  of \:the  \: Isoceles  \:∆\: :- .}}

  • \sf{Although \:    height \:  is  \:   not  \:   given  \:   we  \:  \: can }\sf{ \:   find \:    it  \:   by  \:   the \:    { \blue{ \underline{HERON'S \:  formula}}}}.

 =\sf { \orange{ \sqrt{s(s -a )(s - b)(s - c)} }}

  • Here, s refresh to the semi-circle.
  • To find s (semi-circle) the formula is :-

=  \huge   \bf\frac{a + b + c}{2}

  \sf \implies \: { \:    \frac{5 + 5 + 6}{2} } =  \frac{16}{2}  = 8cm.

Area of the Isoceles ∆ :-

(using HERON'S formula)

 =  \bf  \sqrt{8( 8- 6)( 8- 5)(8 - 5)}  \\  \bf \:  =   \sqrt{8 \times 2 \times 3 \times 3}  \\  \bf \:  =  \sqrt{144}  = 12cm^2

\rm{\boxed{\boxed{\mathfrak{\blue✧ <u>\</u>purple A \pink n \red s \orange w \green \purple \blue e \red r \pink s :- }}}}

  • \rm\bold{ <strong> </strong><strong> </strong><strong>Area</strong><strong> </strong><strong>=</strong><strong> </strong><strong>1</strong><strong>2</strong><strong>c</strong><strong>m</strong><strong>^</strong><strong>2</strong><strong> </strong>}
  • Perimeter = 16cm.
Similar questions