exercise 2.4 question 5 class 9
Answers
Answered by
20
here is your answer dude
Attachments:
Answered by
19
☛ Factor Theorem ;
If p ( x ) is a polynomial of degree ≥ one and a is any real number , then
( i ) ( x - a ) is a factor of p ( x ) , if p ( a ) = 0.
( ii ) p ( a ) = 0, if ( x - a ) is a factor of p (x).
☛ Remainder Theorem ;
Division and Algorithm for polynomials : If p(x) and g(x) are two polynomials with g(x) ≠ 0, then we can find q ( x ) and r (x) and such that
p ( x ) = g ( x ) * q ( x ) + r ( x ), where
r (x) = 0 (or) deg r(x) < deg g(x)
Dividend = Divisor × quotient + remainder
If p ( x ) is a polynomial of degree ≥ one and a is any real number , then
( i ) ( x - a ) is a factor of p ( x ) , if p ( a ) = 0.
( ii ) p ( a ) = 0, if ( x - a ) is a factor of p (x).
☛ Remainder Theorem ;
Division and Algorithm for polynomials : If p(x) and g(x) are two polynomials with g(x) ≠ 0, then we can find q ( x ) and r (x) and such that
p ( x ) = g ( x ) * q ( x ) + r ( x ), where
r (x) = 0 (or) deg r(x) < deg g(x)
Dividend = Divisor × quotient + remainder
Attachments:
Similar questions