Math, asked by manikanta5933, 11 months ago

EXERCISE - 3.3
Find the zeroes of the following quadratic polynomials and verify the relationship between
the zeroes and the coefficients.

(ii) 4s2-4s+1



Answers

Answered by Anonymous
48

Answer :

The zeroes of the given polynomial are 1/2 and 1/2

Given :

The quadratic polynomial is :

  • 4s² - 4s + 1

Task :

  • To find out the zeroes of the given polynomial
  • Also to verify the relationship between the zeroes and the coefficients .

Solution :

Splitting the middle term for factorization :

 \sf4 {s}^{2}  - 4s + 1 \\  \\  \longrightarrow \sf4 {s}^{2}  - 2s - 2s + 1 \\  \\  \longrightarrow \sf2s(2s - 1)  - 1(2s - 1) \\  \\  \longrightarrow \sf(2s - 1)(2s - 1)

The zeroes of the polynomial are :

 \sf2s - 1  = 0\:  \: and \:  \: 2s - 1 = 0 \\  \\  \implies \sf2s = 1 \:  \: and \implies2s = 1 \\  \\  \implies \sf s =  \dfrac{1}{2}  \:  \: and \implies s =  \dfrac{1}{2}

_______________________

Verification of the relationship between the zeroes and the coefficients :

 \sf{Sum \:  \:  of  \:  \: the \:  \:  roots =  \dfrac{ -coefficient \:  of \:  x}{coefficient \:  \: of \:  \:  {x}^{2} } }

 \implies \sf \dfrac{1}{2}  +  \dfrac{1}{2}  =  \dfrac{ - ( - 4)}{4}  \\  \\   \sf\implies \dfrac{1 + 1}{2}  =  \dfrac{4}{4}  \\  \\  \implies \sf \dfrac{2}{2} =  \dfrac{4}{4}  \\  \\   \bf\implies1 = 1

Again :

 \sf{Product \:  \: of \:  \: the \: roots \:  =  \dfrac{constant \: term}{coefficient \:  \: of \:  \:  {x}^{2} } }

 \sf \implies \dfrac{1}{2}  \times  \dfrac{1}{2}  =  \dfrac{1}{4}  \\  \\  \bf \implies \dfrac{1}{4}  =  \dfrac{1}{4}

\bold{Hence \: \: Verified}

Answered by yakshitakhatri2
2

\huge\colorbox{orange}{♥︎ αɳʂɯҽɾ ♥︎} \\  \\  \\  \\   {\sf{\pink{∴ \: 4 {s}^{2}  - 4s + 1 = 0}}} \\  {\sf{a {x}^{2}  + bx + c = 0}} \\ {\sf{\blue{∴ \: a = 4, \: b =  - 4, \: c = 1}}} \\ {\sf{\pink{∴ \: 4 {s}^{2}  - 2s - 2s + 1 = 0}}} \\ {\sf{↬ \: 2s(2s - 1) - 1(2s - 1) = 0}} \\ {\sf{↬ \: (2s - 1)(2s - 1) = 0}} \\ {\boxed{\underline{\underline{\sf{\purple{∴s =  \frac{1}{2} }}}}}} \\  \\  \\ {\underline{\sf{\green{Verification \: ✓}}}} \\  \\ {\boxed{\sf{\pink{sum \: of \: zeroes =  \frac{ - b}{a}  =   \frac{ - ( - 4)}{4} =  \frac{4}{4}  = 1 }}}} \\  \\ {\boxed{\sf{\pink{product \:of \: zeroes  =  \frac{c}{a}   =  \frac{1}{4} }}}} \\  \\

────━━━━━━━━━━━━━━━━━────

Mark as brainliest ✔

Similar questions