Math, asked by RemanDD, 4 months ago

Exercise 5.4/
If a + B = y = 180°, prove that the followings:
i. Tana + Tanß + Tany = Tana. Tanß. Tany
ii.
CotaCotß + CotßCoty + Coty Cota = 1
iii. Tan2a + Tan2B + Tan2y = Tan2a. Tan2ß. Tan2y
B
r
B В
iv.
+ Cot + Cot
Cot CotCot /
2
2​

Answers

Answered by PharohX
2

Step-by-step explanation:

GIVEN :-

 \sf \alpha  +  \beta  +  \gamma  = 180 \degree

TO PROOF :-

1). \sf \:  \:  \tan( \alpha )  +  \tan( \beta )  +  \tan( \gamma )  =   \tan( \alpha )  .\tan( \beta ) . \tan( \gamma )

2). \:  \:  \sf \: \cot( \alpha ) . \cot( \beta )  +  \cot( \beta ) . \cot( \gamma )  +  \cot( \gamma ) . \cot( \alpha )  = 1

SOLUTION :-

 \sf \: It \:  \:  is \:  \:  given \:  \:  that -

 \sf \alpha  +  \beta  +  \gamma  = 180 \degree

 \implies \alpha  +  \beta  = 180 -  \gamma

 \sf \: Then

 \implies  \tan(\alpha  +  \beta)  =  \tan(180 -  \gamma )

 \sf \: We \:  \:  know \:  \:  the \: \:   formula -

  \star \orange{ \sf \:  \tan(180 -  \theta)  =  -  \tan( \theta) }

 \star \orange{ \sf \:  \tan(x + y)  =  \frac{ \tan(x) +  \tan(y)  }{1 -  \tan(x). \tan(y)  } } \\

 \sf \: Now \:  \:  putting \:  \:  in  \:  \: above \:  \:  eq. -

 \implies  \tan(\alpha  +  \beta)  =  \tan(180 -  \gamma )

 \implies \sf \:  \frac{ \tan( \alpha )  +  \tan( \beta ) }{1 -  \tan( \alpha ). \tan( \beta )  }  =  -  \tan( \gamma )  \\

 \sf \: Now  \:  \: cross \:  \:  multiple

 \implies \sf  \tan( \alpha )  +  \tan( \beta )  =  -  \tan( \gamma ) (1 -  \tan( \alpha ) . \tan( \beta ) ) \\

 \sf \implies \:  \tan( \alpha )  +  \tan( \beta )  =  -  \tan( \gamma )  +  \tan( \alpha )  \tan( \beta )  \tan( \gamma )

 \sf \implies \:  \tan( \alpha )  +  \tan( \beta )    +  \tan( \gamma )   =   \tan( \alpha )  \tan( \beta )  \tan( \gamma )

 \sf \: 1st. \:  \:  \:  Proved -

 \sf \green{\tan( \alpha )  +  \tan( \beta )    +  \tan( \gamma )   =   \tan( \alpha )  \tan( \beta )  \tan( \gamma ) }

 \sf \: Now \:  \:  second  \:  \: Prove -

 \sf \: Divide \: by \:  \:  \:  \:  \tan( \alpha )  \tan( \beta )  \tan( \gamma )  \: both \:  \: sides

 \sf \: in \: first \:  \: prove

 \sf \:  \frac{ \tan( \alpha )  +  \tan( \beta ) +  \tan( \gamma )  }{ \tan( \alpha )  \tan( \beta )  \tan( \gamma ) }  =  \frac{ \tan( \alpha ) \tan( \beta ) \tan( \beta )   }{ \tan( \alpha ) \tan( \beta ) \tan( \gamma )   }  \\

 \implies \sf \:  \frac{1}{ \tan( \beta ) \tan( \gamma )  }  +  \frac{1}{ \tan( \alpha ) \tan( \gamma )  } \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   +  \frac{1}{ \tan( \alpha ) \tan( \beta )  } = 1  \\

 \implies \sf \:  \frac{1}{ \tan( \beta ) } . \frac{1}{ \tan( \gamma ) }  +  \frac{1}{ \tan( \alpha ) } . \frac{1}{ \tan( \gamma ) } \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:   +  \frac{1}{ \tan( \alpha ) } . \frac{1}{ \tan( \beta ) }  = 1

 \sf \: Formula -

 \orange{ \sf  \frac{1}{ \tan( x) }  =  \cot(x)}  \\

 \implies  \sf \:  \cot( \beta ) . \cot( \gamma )  +  \cot( \alpha )   \cot( \gamma )  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  +    \cot( \alpha ) \cot( \beta )   = 1

 \implies  \sf \: \cot( \alpha ) . \cot( \beta )  +  \cot( \beta ) . \cot( \gamma )   \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  +  \cot( \gamma ) . \cot( \alpha )  = 1

 \sf \: Hence \:  \:  second  \:  \: proved -

 \green{  \sf \cot( \alpha ) . \cot( \beta )  +  \cot( \beta ) . \cot( \gamma )  } \\ \green{  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  +  \cot( \gamma ) . \cot( \alpha )  = 1}

 \sf \bold{ \sf \: SIMILARLY  \:  \: FOR \:  \:  3rd \:  \:  PROVING -  }

 \sf \: It \:  \:   is \:  same  \: as \:  1st \:  proving  \: just  \: multiplying \:  by \:  2

 \sf \alpha  +  \beta  +  \gamma  = 180 \degree

 \sf 2(\alpha  +  \beta  +  \gamma)  = 2(180 \degree )

2 \alpha  + 2 \beta  = 360 - 2 \gamma

 \implies \sf \:  \:  \tan(2 \alpha  + 2 \beta )  =  \tan(360 - 2 \gamma )  \\

 \sf \: NOW \:  \:  solve \:  \:  it  \:  \: as  \:  \: first  \:  \: we  \:  \: get

 \sf \green{\tan( 2\alpha )  +  \tan( 2\beta )    +  \tan(2 \gamma )}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf \green{  =   \tan( 2\alpha )  \tan( 2\beta )  \tan( 2\gamma ) }

Similar questions