Math, asked by jangminlunguite09, 2 months ago

EXERCISE 6.2
1. In Fig. 6.28, find the values of x and y and then
show that AB II CD.​

Answers

Answered by Anonymous
11

Step-by-step explanation:

 \\  \\

 \blue{ \bf{ \underline{QUESTION} : }}

 \\  \\

1. In Fig. 6.28, find the values of x and y and then

show that AB II CD.

 \\  \\

_________________________

 \\

 \boxed{ \huge{ \bold{Given}}}

  •  \angle \: A = 50 { \degree}

 \\  \\  \\

  • \angle \: C= 130 { \degree}

 \\  \\  \\

 \boxed{ \huge{ \bold{to \: find}}}

 \\

  • x and y value

 \\  \\  \\

  • Prove that AB || CD

 \\  \\  \\

 \star{ \pink{ \underline{ \underline{Solution :  - }}}}

 \\  \\

We Showed in Figure

 \\  \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  {\implies{ \sf{ \angle \: A +{ \angle \: x = 180 \degree}}}}

 \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  {\implies{ \sf{ 50 \degree +{ \angle \: x = 180 \degree}}}}

 \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  {\implies{ \sf{ { \angle \: x = 180 \degree - 50 \degree}}}}

 \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  {\implies{ \sf{ { \angle \: x =  {\boxed{ \red{130 \degree}}}}}}}

 \\  \\  \\  \\  \\

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  {\implies{ \sf{ \angle \: C+{ \angle \: y = 180 \degree}}}}

 \\

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  {\implies{ \sf{ 130 \degree +{ \angle \: y = 180 \degree}}}}

 \\

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  {\implies{ \sf{  { \angle \: y = 180 \degree - 130 \degree}}}}

 \\

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  {\implies{ \sf{  { \angle \: y = {\boxed{ \red{ 50 \degree }}}}}}}

 \\

We Know that

 \\

 \sf{ \angle \: x \: and \:  {\angle \: y \: is \: a \: Vertically \:  opposite  \: angels}}

 \\

So,

 \:  \:  \:  \:  \ \sf{x = y = 180 \degree}

They are alternate interior Angles

 \\

AB II CD , Proved

 \\

============================================

Attachments:
Similar questions