Math, asked by ChetanMeshram684, 11 months ago

Exercise 6.6 Que. 10. Cbse NCERT. Solve it​

Attachments:

Answers

Answered by TRISHNADEVI
5

 \huge{ \underline{ \overline{ \mid{ \mathfrak{ \purple{ \:   \: QUESTION \:  \: } \mid}}}}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \text{Nazima is fly fishing in a stream. The tip} \\  \text{of her fishing rod is 1.8 m above the surface of } \\  \text{the water and the fly at the end of the string } \\  \text{rests on the water 3.6 m away and 2.4 m from } \\  \text{a point directly under the tip of the rod. } \\  \text{Assuming that her string (from the tip of her } \\  \text{rod to the fly) is taur, how much string does } \\  \text{she have out ? If she pulls in the string at the }  \\ \text{rate of 5 cm per second, what will be the } \\  \text{horizontal distance of the fly from her after }  \\ \text{12 seconds \: ?}

 \huge{ \underline{ \overline{ \mid{ \mathfrak{ \purple{ \:   \: SOLUTION \:  \: } \mid}}}}}

 \mathfrak{Let,} \\   \:  \:  \:  \:  \:  \:  \:  \:  \: \text{ \red{AB} be the height of the rod tip from the} \\  \text{surface of water and  \red{BC} be the horizontal } \\  \text{distance between fly to tip of the rod. Then, } \\  \text{\red{AC} will be the length of the string.}

 \:  \:  \:  \:  \:  \:  \:  \underline{ \text{ \: In  Figure. 1, \: }} \\  \\   \underline{\bold{  \:  \: By  \:  \: using \:  \:  Pythagoras  \:  \: theorem,  \:  \: in  \:  \:}}  \\  \underline{ \bold{ \: the \:  \red{  \triangle  \: ABC}, \: }} \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \bold{AC {}^{2}  = AB {}^{2}  + BC {}^{2}}    \\ \\  \bold{\implies AC {}^{2}  = (1.8 \: m) {}^{2}  + (2.4 \: m) {}^{2} } \\  \\  \bold{ \implies AC {}^{2}  = (3.24 + 5.76)  \: m {}^{2}  } \\  \\  \bold{\implies AC {}^{2}  = 9  \: m {}^{2} }  \\  \\  \bold{\implies AC = \sqrt{  9 \:  m {}^{2} } } \\  \\  \:  \:  \:  \:  \:  \:  \bold{ \therefore  \:  \red{AC = 3 \:  m }} \\  \\  \bold{ \therefore \: The   \: \: length \: \:   of  \:  \: the \:   \: string,  \red{AC \: = 3 \:  m}.}

 \:  \:  \:  \:  \:  \:  \tt{ If  \:  \: Nazima  \:  \: pulls  \:  \: in \:  \:  the  \:  \: string  \:  \: at  \:  \: the  \:  \: } \\  \tt{rate  \:  \: of \:  \:  5 cm/s, \:  then \:  \:  the \:  \:  distance \:  \: } \\  \tt{ travelled \:  \:  by  \:  \: fly \:  \:  in  \:  \: 12 \:  \:  seconds  \:  \: will \:  \:  be } \\   \\ \tt{=  \red{( 5 \times 12) \: cm }=  \red{60 \:  cm} =  \red{0.6 \:  m}}

 \mathfrak{Let,} \\   \:  \:  \:  \:  \:  \:  \:  \:  \text{ \red{D} be the position of fly after  \red{12 seconds}. } \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \text{[Figure. 2]} \\  \text{ Hence, } \\   \:  \:  \: \text{ \red{AD} will be the length of string which is out} \\  \text{ after  \red{12 seconds}.} \\  \\  \tt{ \therefore  \:  Length  \: of  \:  \: the \:  \:  string \:  \:  pulls  \:  \: by   \:  \: Nazima}  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \tt{ =  \red{AD} =  \red{3  \: m - 0.6 \:  m} =  \red{2.4 \: m}}

 \mathfrak{Now,} \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \underline{ \text{ \: In \: Figure. 2, \: }} \\  \\  \underline{ \bold{ \: By  \:  \: using \:  \:  Pythagoras \:  \:  theorem  \:  \: in  \:  \: }} \\  \underline{ \bold{ \: the \:  \triangle ADB, \: }} \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bold{AD {}^{2}  = AB {}^{2}  + BD {}^{2} } \\  \\  \bold{ \implies (2.4 \:  m) {}^{2}  =(1.8  \: m) {}^{2}  + BD {}^{2}  } \\  \\ \bold{\implies 5.76  \: m {}^{2}  = 3.24  \: m {}^{2}  + BD {}^{2} } \\  \\  \bold{\implies BD {}^{2}  = (5.76 - 3.24)  \: m {}^{2} } \\  \\  \bold{\implies  BD {}^{2}  = 2.52 \:  m {}^{2}} \\  \\  \bold{ \implies \: BD = \sqrt{2.52 \:  m {}^{2} }} \\  \\  \:  \:  \:  \:  \:  \bold{\therefore  \:  \red{BD = 1.59  \: m }\:  \:  \:  (Approx.)}

 \sf{Hence, \:  the \:  \:  horizontal  \:  \: distance \:   \: of \:  \:  the  \:  \: fly \:  \: } \\  \sf{ from  \:  \: Nazima \:  \:  after  \:  \: 12 \:  seconds \:= (1.59 + 1.2 )  \: m } \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf{= \red{2.79  \: m} \:  (Approx.)}

Attachments:
Similar questions