Math, asked by swagataghs13, 3 months ago

EXERCISE 7.2
1. Find the cube root of each of the following numbers by prime factorisation metha
(ii) 512
(ii) 10648 (v) 27000 me
(v) 15625 (11) 13824 (vi) 110592 (VID) 46636
(ix) 175616 (x) 91125​

Answers

Answered by swathisring
0

Answer:

I hope this is helpful for u

Step-by-step explanation:

(ii) 512

\sqrt[3]{512}=\sqrt[3]{2\times2\times2\times2\times2\times2\times2\times2\times2}

3

512

=

3

2×2×2×2×2×2×2×2×2

= 2 x 2 x 2 = 8

(iii) 10648

\sqrt[3]{10648}=\sqrt[3]{2\times2\times2\times11\times11\times11}

3

10648

=

3

2×2×2×11×11×11

= 2 x 11

= 22

(iv) 27000

\sqrt[3]{27000}=\sqrt[3]{2\times2\times2\times3\times3\times3\times5\times5\times5}

3

27000

=

3

2×2×2×3×3×3×5×5×5

= 2 x 3 x 5

= 30

(v) 15625

\sqrt[3]{15625}=\sqrt[3]{5\times5\times5\times5\times5\times5}

3

15625

=

3

5×5×5×5×5×5

= 5 x 5

= 25

(vi) 13824

\sqrt[3]{13824}=\sqrt[3]{2\times2\times2\times2\times2\times2\times2\times2\times2\times3\times3\times3}

3

13824

=

3

2×2×2×2×2×2×2×2×2×3×3×3

= 2 x 2 x 2 x 3

= 24

(vii) 110592

\sqrt[3]{110592}=\sqrt[3]{2\times2\times2\times2\times2\times2\times2\times2\times2\times2\times2\times2\times3\times3\times3}

3

110592

=

3

2×2×2×2×2×2×2×2×2×2×2×2×3×3×3

= 2 x 2 x 2 x 2 x 3

= 48

(viii) 46656

\sqrt[3]{46645}=\sqrt[3]{2\times2\times2\times2\times2\times2\times3\times3\times3\times3\times3\times3}

3

46645

=

3

2×2×2×2×2×2×3×3×3×3×3×3

= 2 x 2 x 3 x 3

= 36

(ix) 175616

\sqrt[3]{175616}=\sqrt[3]{2\times2\times2\times2\times2\times2\times2\times2\times2\times7\times7\times7}

3

175616

=

3

2×2×2×2×2×2×2×2×2×7×7×7

= 2 x 2 x 2 x 7

= 56

(x) 91125

\sqrt[3]{91125}=\sqrt[3]{3\times3\times3\times3\times3\times3\times5\times5\times5}

3

91125

=

3

3×3×3×3×3×3×5×5×5

= 3 x 3 x 5 = 45

Answered by babliagrawal2306
1

plz thank and mrk brainlist

Attachments:
Similar questions