EXERCISE 7.2
B
In an isosceles triangle ABC, with AB = AC, the bisectors of B and Z C intersect
each other at O. Join A to O. Show that:
A
(1) OB=OC
(ii) AO bisects ZA
Answers
Answer:
(i) In △ABC, we have
AB=AC
⇒∠C=∠B ∣ Since angles opposite to equal sides are equal
⇒
2
1
∠B=
2
1
∠C
⇒∠OBC=∠OCB
⇒∠ABO=∠ACO …(1)
⇒OB=OC ∣ Since sides opp. to equal ∠s are equal …(2)
(ii) Now, in △ABO and △ACO, we have
AB=AC ∣ Given
∠ABO=∠ACO ∣ From (1)
OB=OC ∣ From (2)
∴ By SAS criterion of congruence, we have
△ABO≅△ACO
⇒∠BAO=∠CAO ∣ Since corresponding parts of congruent triangles are equal
⇒ AO bisects ∠A
Given:
AB = AC and
the bisectors of ∠B and ∠C intersect each other at O
(i) Since ABC is an isosceles with AB = AC,
∠B = ∠C
½ ∠B = ½ ∠C
⇒ ∠OBC = ∠OCB (Angle bisectors)
∴ OB = OC (Side opposite to the equal angles are equal)
(ii) In ΔAOB and ΔAOC,
AB = AC (Given in the question)
AO = AO (Common arm)
OB = OC (As Proved Already)
So, ΔAOB ≅ ΔAOC by SSS congruence condition.
BAO = CAO (by CPCT)
Thus, AO bisects ∠A..