Math, asked by siddiquizainab74, 8 months ago

EXERCISE 9.1
1. A circus artist is climbing a 20 m long rope, which is
tightly stretched and tied from the top of a vertical
pole to the ground. Find the height of the pole, if
the angle made by the rope with the ground level is
30° ?​

Answers

Answered by callofduty123
1

Answer:

Let AB = h metres be the height of the pole Given

AC = 20 m be the rope which the circus artist is climbing ∠ACB=30

In ΔABC sin30

=

AC

AB

=

20

h

20

h

=

2

1

⇒h=

2

1

×20m=10m

please mark me as brainliest

Answered by nakrasameer18
0

Step-by-step explanation:

\mathfrak{ \huge{ \green{ \underline{given}}}} \\  \mathfrak{ \large{ \red{ac \:  =  \: 20 \: m}}} \\  \mathfrak{ \large{ \red{angle \: of \: elevation = {30}^{o}}}} \\  \mathfrak{ \huge{ \green{ \underline{to \: find}}}} \\  \mathfrak{ \large{ \red{height \: of \:  pole \: (h) \: =  \: ?}}} \\ \mathfrak{ \huge{ \green{ \underline{formula \: to \: be \: used}}}} \\  \mathfrak{ \large{ \red{sin \: θ  \:  =  \:  \frac{perpendicular}{hypotenuse} }}} \\  \mathfrak{ \large{ \red{ \sin \:   {30}^{o}  \:  =  \:  \frac{1}{2}  }}} \\  \mathfrak{ \huge{ \green{ \underline{solution}}}} \\  \mathfrak{ \large{ \blue{sin \: θ  \:  =  \:  \frac{perpendiular}{hypotenuse} }}} \\  \mathfrak{ \large{ \blue{ \sin \: c  \:  =  \: \frac{ab}{ac}  }}} \\  \mathfrak{ \large{ \blue{ \sin \:  {30}^{o}  \:  =  \:  \frac{ab}{20}   }}} \\  \mathfrak{ \large{ \blue{ \frac{1}{2} \:  =  \:  \frac{ab}{20}  }}} \\  \mathfrak{ \large{ \blue{ab \:  =  \:  \frac{20}{2} }}} \\  \mathfrak{ \large{ \blue{ab \:  =  \: 10}}} \\  \mathfrak{ \large{ \orange{ \underline{ => height \: of \: pole \:  =  \: 10 \: m}}}}

Similar questions