Math, asked by sharmasofia112233445, 9 months ago

expand (1+2x)^7 using binomial theorem​

Answers

Answered by sushrisimtan
1

Step-by-step explanation:

Write out Pascal's triangle as far as the row which begins

1

,

6

...

enter image source here

This gives you the sequence of coefficients for

(

a

+

b

)

6

:

1

,

6

,

15

,

20

,

15

,

6

,

1

Then we can account for the factor of

2

of the

2

x

term, by multiplying by a sequence of powers of

2

:

1

,

2

,

4

,

8

,

16

,

32

,

64

to get:

1

,

12

,

60

,

160

,

240

,

192

,

64

Hence:

(

1

+

2

x

)

6

=

1

+

12

x

+

60

x

2

+

160

x

3

+

240

x

4

+

192

x

5

+

64

x

6

Answered by smithasijotsl
0

Answer:

(1+2x)⁷ = 1+14x + 84x² + 280x³ + 560x⁴ + 672x⁵ + 448x⁶+ x128x⁷

Step-by-step explanation:

Required to expand (1+2x)⁷ using binomial theorem

Recall the formula

Binomial theorem:

(1+x)ⁿ = ⁿC₀+ⁿC₁(x) +ⁿC₂(x)² + ⁿC₃(x)³ + ................... ⁿCₙ(x)ⁿ  ---------------(1)

Solution:

Here n = 7

ⁿC₀ = ⁷C₀ = 1

ⁿC₁ = ⁷C₁ = 7

ⁿC₂ = ⁷C₂ = \frac{7X6}{1X2} = 21

ⁿC₃ = ⁷C₃ = \frac{7X6X5}{1X2X3} = 35

ⁿC₄ = ⁷C₄ =  ⁷C₃  = 35

ⁿC₅  = ⁷C₅ = ⁷C₂ = \frac{7X6}{1X2} = 21

ⁿC₆= ⁷C₆ = ⁷C₁ = 7

ⁿC₇  =  ⁷C ₇ = 1

Substituting these values and the value of x as 2x we get in equation (1) we get

(1+2x)⁷= 1+7(2x) +21(2x)² + 35(2x)³ + 35(2x)⁴ + 21(2x)⁵ + 7(2x)⁶+ 1(2x)⁷

= 1+14x + 84x² + 280x³ + 560x⁴ + 672x⁵ + 448x⁶+ x128x⁷

(1+2x)⁷ = 1+14x + 84x² + 280x³ + 560x⁴ + 672x⁵ + 448x⁶+ x128x⁷

#SPJ2

Similar questions