Math, asked by Lenin274, 6 hours ago

Expand (2+1/X)^3 using identities ​

Answers

Answered by Anonymous
0

Answer:

\begin{gathered} = ( {2x + 1})^{3} \\ = {2x}^{3} + {1}^{3} + 3 (2x)^{2} (1) + 3 (2x) {1}^{2} \\ = {8x}^{3} + 1 + 12 \: {x}^{2} + 6x \end{gathered}

=(2x+1)

3

=2x

3

+1

3

+3(2x)

2

(1)+3(2x)1

2

=8x

3

+1+12x

2

+6x

Heya friend! :)

The identity used in it is

= ({a + b})^{3} = {a}^{3} + {b}^{3} + 3 {a}^{2} b + 3a {b}^{2}=(a+b)

3

=a

3

+b

3

+3a

2

b+3ab

2

HOPE THIS HELPS YOU :)

Step-by-step explanation:

  • hope it helps you!
Answered by ᏢerfectlyShine
4

Answer:

The (x+1)3 formula can be verified or proved by multiplying (x + 1) three times, i.e,

(x+1)3 = (x+1)(x+1)(x+1)

(x+1)3 = [x2 + x + x + 1] (x + 1)

= (x + 1) [x2 + 2x + 1]

= x3 + 2x2 + x + x2 + 2x + 1

= x3 + 3x2 + 3x + 1

Therefore, (x+1)3 = x3 + 3x2 + 3x + 1

Similar questions