Math, asked by anikethjadhav227, 6 months ago

Expand (2a-3b)^3 using suitable identity

Answers

Answered by sainiinswag
4

We need to expand (2a−3b)3

We know suitable identity is (x−y)3=x3−3x2y+3xy2+y3

Here x=2a and y=3b

Therefore, value of (2a−3b)3 is

=(2a)3−3(2a)2(3b)+3(2a)(3b)2−(3b)3

=8a3−36a2b+54ab2−27b3

Plzzzzz mark me Brainliest...

.

Plzzz Follow me Also...

Answered by Anonymous
7

Answer :-

  • the expanded form is 4a² - 9b² - 36a²b + 54ab².

Given :-

  • (2a - 3b)³

To Find :-

  • Expanded form of this.

Solution :-

Here

  • (2a - 3b)³

Identity used

  • (a - b)³ = a³ - b³ - 3ab (a - b)

Let

  • a = 2a
  • b = 3b

According to question :-

⇒ (a - b)³ = (2a)² - (3b)² - 3.2a.3b (2a - 3b)

⇒ (a - b)³ = 4a² - 9b² - 18ab (2a - 3b)

⇒ (a - b)³ = 4a² - 9b² - 36a²b + 54ab²

Hence, the expanded form is 4a² - 9b² - 36a²b + 54ab².

Similar questions