Math, asked by roopaharish926, 6 hours ago

expand:(2x+1)³ answer ​

Answers

Answered by MichWorldCutiestGirl
38

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

❐QuEsTiOn,

 \pink{ \sf \: Expand:(2x+1)³ answer  }

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

❐SoLuTiOn,

  \green{\sf {↪(2x + 1)}^{3}  = {(2x + 1)}^{3} }

 \pink{ \sf  \underline{\: As  \: We \:  know  \: That, }}

  •   \green{\sf \:   \boxed{  \pink{{(a + b)}^{3}  =  {a}^{3}  + 3ab(a + b) +  {b}^{3}  }}}

 \green{ \sf  \underline{\: Then, }}

  \pink{\sf \: ↪ {(2x + 1)}^{3}   = {(2x + 1)}^{3} }  \\

\green{ \sf \: ↪ {(2x + 1)}^{3}  =  {(2x)}^{3}  + 3(2x)(1)(2x + 1) +  {1}^{3} } \\

\pink{ \sf \: ↪ {(2x + 1)}^{3}  =  {8x}^{3}  + 6x(2x + 1) +  1 } \\

\green{ \sf \: ↪ {(2x + 1)}^{3}  =  {8x}^{3}  + 12 {x}^{2} + 6x +  1 } \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

❐FiNal AnSwEr,

\blue{ \sf \:  {(2x + 1)}^{3}  =  {8x}^{3}  + 12 {x}^{2} + 6x +  1 } \\

❥Hope you get your AnSwEr.

Answered by Anonymous
71

 \large \underline{ \underline{ \text{Question:}}} \\

  •  \text{Expand: } \:  {(2x + 1)}^{3}  \\  \\

 \large \underline{ \underline{ \text{Solution:}}} \\

\longrightarrow  {(2x + 1)}^{3}  \\

[ {(x + y)}^{3} =  {x}^{3}  + 3 {x}^{2}y + 3x {y}^{2}   +  {y}^{3}  ]

\longrightarrow  {(2x + 1)}^{3}  \\

\longrightarrow   {(2x)}^{3}   + 3{(2x)}^{2}(1)  + 3(2x)(1)^{2}  +  {1}^{3}  \\

\longrightarrow   {8x}^{3}   + 3{(4 {x}^{2} )}(1) + 3(2x)(1) +  {1}  \\

\longrightarrow    \boxed{{8x}^{3}   + 12 {x}^{2} + 6x + 1}  \\  \\

 \large \underline{ \underline{ \text{Identity Used:}}} \\

  • {(x + y)}^{3} =  {x}^{3}  + 3 {x}^{2}y + 3x {y}^{2}   +  {y}^{3}   \\  \\

 \large \underline{ \underline{ \text{Final Answer:}}} \\

  •  \text{The expansion of } {(2x + 1)}^{3}  \:  \text{is} \: \:  \:  \:  \:  \:  \:  \:  \:  \:   \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \ 8 {x}^{3}  + 12 {x}^{2}  + 6x + 1. \\  \\

 \large \underline{ \underline{ \text{More Information:}}} \\

 \large \underline{{ \text{More Algebraic Identities,}}}

  •  {(x + y)}^{2}  =  {x}^{2}  + 2xy +  {y}^{2}  \\
  •  {(x - y)}^{2}  =  {x}^{2} - 2xy +  {y}^{2}  \\
  • (x + y)(x - y) =  {x}^{2}  -  {y}^{2}  \\
  • (x + a)(x + b) =  {x}^{2}  + (a + b)x + ab \\
  •  {(x + y + z)}^{2}  =  {x}^{2}  +  {y}^{2}  +  {z}^{2}  + 2xy + 2yz + 2zx \\
  •  {(x - y)}^{3}  =  {x}^{3}  + 3 {x}^{2} y - 3x {y}^{2}  -  {y}^{3}  \\
  •  {x}^{3}  +  {y}^{3}  +  {z}^{3}  - 3xyz = (x + y + z)( {x}^{2}  +  {y}^{2}  +  {z}^{2}  - xy - yz - zx) \\

Similar questions