Math, asked by khushisongara, 1 year ago

Expand (2x-1/3x) ^2​

Answers

Answered by Anonymous
53

Step by step Expansion :

 {(  \frac{2x - 1}{3x} })^{2}   \\  \\  =   \frac{ {(2x)}^{2} +  {1}^{2}   - 2x}{9x}  \\  \\  =  \frac{4 {x}^{2}  - 2x + 1 }{9x}

Answered by akshaym72sl
2

Answer:

4x - (\frac{4}{3}) + \frac{1}{9x^{2} }

Given:

(2x - \frac{1}{3x} )^{2}

Step-by-step Explanation:

According to identity:

(a - b)^{2} = a^{2} -  2ab + b^{2}

using this identity, we can write

(2x - \frac{1}{3x} )^{2} = (2x)^{2} - 2(2x)(\frac{1}{3x}) + (\frac{1}{3x}) ^{2}

(2x - \frac{1}{3x} )^{2} = 4x - (\frac{4}{3}) + \frac{1}{9x^{2} }

Hence, (2x - \frac{1}{3x} )^{2} = 4x - (\frac{4}{3}) + \frac{1}{9x^{2} }.

#SPJ2

Similar questions