Expand (3a+2b-7c)² using algebric identities pls help
Answers
Answered by
0
Step-by-step explanation:
(3a)²+(2b)²+(-7c)²+2(3a)(2b) +2(2b)(-7c)+2(-7c)(3a)
9a²+4b²+49c²+12ab-28bc-42ca
Answered by
10
Answer:
9a² + 4b² + 49c² + 12ab - 28bc - 42ac
Step-by-step explanation:
Here, for solving this question we apply this identity:
(a + b + c)² = a² + b² + c² + 2(ab + bc + ac)
where:
- a = 3a
- b = 2b
- c = -7c
Put in these values in the above mentioned identity.
(3a + 2b - 7c)²
= (3a)² + (2b)² + (-7c)² + 2[(3a)(2b) + (2b)(-7c) + (-7c)(3a)]
= 9a² + 4b² + 49c² + 2[6ab - 14bc - 21ac]
= 9a² + 4b² + 49c² + 12ab - 28bc - 42ac
∴ (3a+2b-7c)²
=【9a² + 4b² + 49c² + 12ab - 28bc - 42ac】
KNOW MORE:
Some important algebraic identities:
- (a + b)² = a² + b² + 2ab
- (a - b)² = a² + b² - 2ab
- a² - b² = (a + b) (a - b)
- (a + b)³ = a³ + b³ + 3ab(a + b)
Similar questions