Math, asked by dhruvsingh1986, 8 months ago

Expand (3x+1/3x)^3 pls give awnser

Answers

Answered by kumar6171
5

Answer:

(3x-1)^3.

Here we'll use the property of (a-b)^3

I.e. (a-b)^3 = a^3 - b^3– 3(a)(b)(a-b)

We get,

(3x-1)^3 = (3x)^3 - (1)^3 -3(3x)(1)(3x-1)

= 27x^3–1–27x^2+9x

= 27x^3 - 27x^2 +9x -1. which is the required expansion.

Mark as branliest

Answered by TheDefaulter
24

ANSWER:-

 \frac{ {(3x + 1)}^{3} }{ {(3x)}^{3} }  \\  \\  =  >   \frac{ {(3x)}^{3} +  {1}^{3}  + 2(3x)(1)( 3x + 1)}{ {(3x)}^{3} }  \\  \\  =  >  \frac{27 {x}^{3}   + 1 + 6x(3x + 1)}{(3x)^{3} }  \\  \\  =  >   \frac{27{x}^{3}  + 1 + 18 {x}^{2}  + 6x}{(3x)^{3} }  \\  \\  =  >  \frac{27{x}^{3}  + 18 {x}^{2}  + 6x + 1}{27 {x}^{3} }

Hence the expansion of (3x+1/3x)^3 is \frac{27{x}^{3}  + 18 {x}^{2}  + 6x + 1}{27 {x}^{3} }

Similar questions