Math, asked by Anonymous, 1 month ago

Expand (4a - 2b - 3c)^2 using suitable identities,
note :-
-- do not spam
-- please give good answer

Answers

Answered by CopyThat
58

Answer :-

Given :-

(4a - 2b - 3c)²

Using the identity :-

⟹ (x + y + z)² :

  • x² + y² + z² + 2xy + 2yz + 2zx

Since :-

⟹ [4a +(-2b)² + (-3c)²]

⟹ (-4a)² + (-2b)² + (-3c)² + 2(4a)(-2b) + 2(-2b)(-3c) + 2(-3c)(4a)

16a² + 4b² + 9c² - 16ab + 12bc - 24ac

Learn more :-

(x + y)² = x² + y² + 2xy

(x - y)² = x² - 2xy + y²

x² - y² = (x + y)(x - y)

(x + y)³ = x³ + y³ + 3xy(x + y)

(x - y)³ = x³ - y³ - 3xy(x - y)

x³ - y³ = (x - y)(x² + xy + y²)

x³ + y³ = (x + y)(x² - xy + y²)

Answered by Anonymous
146

 \large \rm {\underbrace{\underline{Elucidation:-}}}

 \sf \red {\underline{\underline{Provided:-}}}

 \to \tt {(4a-2b-3c)^{2}}

➻The given Equation is in the form of,

 \to \tt {(x+y+z)^{2}}

 \sf \blue {\underline{\underline{We\: know:-}}}

 \to \tt {(x+y+z)^{2}=x^{2}+y^{2}+z^{2}+2xy+2yz+2xz}

where,

 \mapsto \tt {x=4a}

 \mapsto \tt {y=-2b}

 \mapsto \tt {z=-3c}

➻Supplanting the given values in the formula,

 \to \tt {(4a-2b-3c)^{2}=(4a)^{2}+(-2b)^{2}+(-3c)^{2}+2(4a)(-2b)+2(-2b)(-3c)+2(4a)(-3c)}

 \to \tt {(4a-2b-3c)^{2}=16^{2}+4b^{2}+9c^{2}-16ab+12bc-24ac}

➻This can't be expanded further.

Similar questions