expand (a+b+c)square
Answers
Answer:
(a+ b + c )² = a² + b²+ c² +2( ab + bc +ca)
Step-by-step explanation:
hope this helps U.....
mark as brainlist....
in return give thanks....
follow me.....
Step-by-step explanation:
How to expand the square of a trinomial?
The square of the sum of three or more terms can be determined by the formula of the determination of the square of sum of two terms.
Now we will learn to expand the square of a trinomial (a + b + c).
Let (b + c) = x
Then (a + b + c)2 = (a + x)2 = a2 + 2ax + x2
= a2 + 2a (b + c) + (b + c)2
= a2 + 2ab + 2ac + (b2 + c2 + 2bc)
= a2 + b2 + c2 + 2ab + 2bc + 2ca
Therefore, (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca
● (a + b - c)2 = [a + b + (-c)]2
= a2 + b2 + (-c)2 + 2ab + 2 (b) (-c) + 2 (-c) (a)
= a2 + b2 + c2 + 2ab – 2bc - 2ca
Therefore, (a + b - c)2 = a2 + b2 + c2 + 2ab – 2bc - 2ca
● (a - b + c)2 = [a + (- b) + c]2
= a2 + (-b2) + c2 + 2 (a) (-b) + 2 (-b) (-c) + 2 (c) (a)
= a2 + b2 + c2 – 2ab – 2bc + 2ca
Therefore, (a - b + c)2 = a2 + b2 + c2 – 2ab – 2bc + 2ca
● (a - b - c)2 = [a + (-b) + (-c)]2
= a2 + (-b2) + (-c2) + 2 (a) (-b) + 2 (-b) (-c) + 2 (-c) (a)
= a2 + b2 + c2 – 2ab + 2bc – 2ca
Therefore, (a - b - c)2 = a2 + b2 + c2 – 2ab + 2bc – 2ca
Mark me the brainlist