Math, asked by rishidamania, 5 months ago

expand (a+b+c)square​

Answers

Answered by adeshkumar85
3

Answer:

(a+ b + c )² = a² + b²+ c² +2( ab + bc +ca)

Step-by-step explanation:

hope this helps U.....

mark as brainlist....

in return give thanks....

follow me.....

Answered by jsabu559
1

Step-by-step explanation:

How to expand the square of a trinomial?

The square of the sum of three or more terms can be determined by the formula of the determination of the square of sum of two terms.

Now we will learn to expand the square of a trinomial (a + b + c).

Let (b + c) = x     

Then (a + b + c)2 = (a + x)2 = a2 + 2ax + x2

                         = a2 + 2a (b + c) + (b + c)2

                         = a2 + 2ab + 2ac + (b2 + c2 + 2bc)

                         = a2 + b2 + c2 + 2ab + 2bc + 2ca

Therefore, (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca

● (a + b - c)2 = [a + b + (-c)]2

                   = a2 + b2 + (-c)2 + 2ab + 2 (b) (-c) + 2 (-c) (a)

                   = a2 + b2 + c2 + 2ab – 2bc - 2ca

Therefore, (a + b - c)2 = a2 + b2 + c2 + 2ab – 2bc - 2ca

● (a - b + c)2 = [a + (- b) + c]2

                   = a2 + (-b2) + c2 + 2 (a) (-b) + 2 (-b) (-c) + 2 (c) (a)

                   = a2 + b2 + c2 – 2ab – 2bc + 2ca

Therefore, (a - b + c)2 = a2 + b2 + c2 – 2ab – 2bc + 2ca

● (a - b - c)2 = [a + (-b) + (-c)]2

                   = a2 + (-b2) + (-c2) + 2 (a) (-b) + 2 (-b) (-c) + 2 (-c) (a)

                   = a2 + b2 + c2 – 2ab + 2bc – 2ca

Therefore, (a - b - c)2 = a2 + b2 + c2 – 2ab + 2bc – 2ca

Mark me the brainlist

Similar questions