Math, asked by chaudhryvikram19, 7 months ago

Expand and combine like terms.
(3z^5+7z^2)^2​

Answers

Answered by satya11103
1

Answer:

Answer:51z^7 + 49z^4

Answer:51z^7 + 49z^4 Step-by-step explanation:

Answer:51z^7 + 49z^4 Step-by-step explanation:(3z^5 + 7z^2)² hence, (a+b)²= a²+ 2ab + b²

Answer:51z^7 + 49z^4 Step-by-step explanation:(3z^5 + 7z^2)² hence, (a+b)²= a²+ 2ab + b²= (3z^5)² + 2(3z^5)(7z^2) + (7z^2)²

Answer:51z^7 + 49z^4 Step-by-step explanation:(3z^5 + 7z^2)² hence, (a+b)²= a²+ 2ab + b²= (3z^5)² + 2(3z^5)(7z^2) + (7z^2)²= 9z^7 + 52z^7 + 49z^2

Answer:51z^7 + 49z^4 Step-by-step explanation:(3z^5 + 7z^2)² hence, (a+b)²= a²+ 2ab + b²= (3z^5)² + 2(3z^5)(7z^2) + (7z^2)²= 9z^7 + 52z^7 + 49z^2= 61z^7 + 49z^2

Answered by ChitranjanMahajan
0

The expanded and combined solved version of the given algebraic expression is  9z^{10}  + 42z^{7} +   49z^{4}.

The general formula of the expansion of the square of the sum of two variables is :

                     (a+b)^{2} = a^{2}  + 2ab + b^{2}

Here, we need to expand for : (3z^{5} + 7z^{2}  )^{2}

So, in comparison to the above formula, we can consider

                  a = 3z^{5}

                  b = 7z^{2}

We expand the given algebraic expression with the variable "z" in the form of a square of the sum of powers of "z" using the above expansion technique. By this, we get independent terms of evaluated powers of z which can be further combined for like terms and simplified.

Thus, applying the above formula of expansion :

                       = (3z^{5} + 7z^{2}  )^{2}

                       = (3z^{5})^{2}  + ( 2*3z^{5}* 7z^{2} ) +   (7z^{2}) ^{2}

                       = 3^{2} (z^{5})^{2}  + ( 2*3z^{5}* 7z^{2} ) +   7^{2} (z^{2}) ^{2}

                       = 9z^{5*2}  + ( 2*3*7)z^{5+2}) +   49z^{2+2}

                       = 9z^{10}  + 42z^{7} +   49z^{4}

Hence, the expanded and combined solved version of the given algebraic expression is  = 9z^{10}  + 42z^{7} +   49z^{4}.

To learn more about Algebraic Expressions, visit

https://brainly.in/question/26500

#SPJ3

                 

 

Similar questions