Math, asked by sakshirajoriya2006, 15 days ago

Expand and simplify each of the following.(b) (2c + 1) (c - 5) + (c - 4) (0 - 3)​

Answers

Answered by steffiaspinno
0

The value of (2c+1) (c-5)+(c-4)(0-3)​ is  \alpha =\frac{(6+\sqrt{22 }) }{2}  and  \beta =\frac{(6-\sqrt{22 }) }{2}

Explanation:

Given:

(2c + 1) (c - 5) + (c - 4) (0 - 3)​

Formula:

\alpha =\frac{-b+\sqrt{b^{2}-4ac } }{2a}

\beta=\frac{-b-\sqrt{b^{2}-4ac } }{2a}

Solution:

==> Multiply (2c + 1) (c - 5)

==> (2c) (c - 5) + 1(c - 5)

==> 2c²-10c+c-5

==> 2c²-9c-5

==> (2c + 1) (c - 5)=2c²-9c-5

==>Multiply (c - 4) (0 - 3)​

==>(c-4)(-3)

==> -3c+12

==>  (c - 4) (0 - 3)​=-3c+12

==> Add the values

==> 2c²-9c-5-3c+12

==> 2c²-9c-3c+12-5

==>  2c²-12c+7

==> This is the quadratic equation

The value of (2c + 1) (c - 5) + (c - 4) (0 - 3)​ is  2c²-12c+7

==>2c²-12c+7

==> a = 2

==> b = -12

==> c = 7

==> Apply the a,b and c values in the formula

==> \alpha =\frac{-b+\sqrt{b^{2}-4ac } }{2a}

==> \alpha =\frac{-(-12)+\sqrt{(-12)^{2}-4(2)(7) } }{2(2)}

==> \alpha =\frac{12+\sqrt{144-4(14) } }{4}

==> \alpha =\frac{12+\sqrt{144-56 } }{4}

==> \alpha =\frac{12+\sqrt{88 } }{4}

==> \alpha =\frac{12+\sqrt{11\times\f2\times2\times2 } }{4}

==> \alpha =\frac{12+2\sqrt{22 } }{4}

==> \alpha =\frac{2(6+\sqrt{22 }) }{4}

==> \alpha =\frac{(6+\sqrt{22 }) }{2}

==> To find another values ,

==> \beta =\frac{-b-\sqrt{b^{2}-4ac } }{2a}

==> \beta =\frac{-(-12)-\sqrt{(-12)^{2}-4(2)(7) } }{2(2)}

==> \beta  =\frac{12-\sqrt{144-4(14) } }{4}

==> \beta  =\frac{12-\sqrt{144-56 } }{4}

==> \beta  =\frac{12-\sqrt{88 } }{4}

==> \beta=\frac{12-\sqrt{11\times\f2\times2\times2 } }{4}

==> \beta  =\frac{12-2\sqrt{22 } }{4}

==> \beta  =\frac{2(6-\sqrt{22 }) }{4}

==> \beta =\frac{(6-\sqrt{22 }) }{2}

The value of (2c+1) (c-5)+(c-4)(0-3)​ is  \alpha =\frac{(6+\sqrt{22 }) }{2}  and  \beta =\frac{(6-\sqrt{22 }) }{2}

Similar questions