expand by using suitable identity (2x+3y)^3
Answers
Answered by
16
hii.....
as we know (a + b)^3 = a^3 + b^3 + 3a^2 b + 3ab^2 ....
so, the answer of ur question is (2x)^3 + ( 3y)^3 + 3 (2x) ( 3y)^2 + 3 (2x)^2 3y
=> 8x^3 + 27y^3 + 6x (9y^2) + 9y ( 4x^2)
=> 8x^3 + 27y^3 + 54 x y^2 + 36 y x^2 .
_____________
hope this helps !
as we know (a + b)^3 = a^3 + b^3 + 3a^2 b + 3ab^2 ....
so, the answer of ur question is (2x)^3 + ( 3y)^3 + 3 (2x) ( 3y)^2 + 3 (2x)^2 3y
=> 8x^3 + 27y^3 + 6x (9y^2) + 9y ( 4x^2)
=> 8x^3 + 27y^3 + 54 x y^2 + 36 y x^2 .
_____________
hope this helps !
rakshita7:
nice answer
Answered by
3
Answer:8x^3+12x^2(1)+6x+1
Step-by-step explanation:(2x+1)^3=2x^3+3*2x^2(1)+3*2x*(1)^2+1^3
=8x+12x^2(1)+6x+1
Similar questions