Math, asked by sippu1322, 3 months ago

expand f(x)=xsinx as fourier series in (0,2π)​

Answers

Answered by mathdude500
28

\begin{gathered}\Large{\bold{{\underline{Formula \: Used - }}}}  \end{gathered}

 \blue{ \boxed{ \sf \: 2sinx \: cosy = sin(x + y) + sin(x - y)}}

 \blue{ \boxed{ \sf \: 2sinx \: siny = cos(x  -  y)  -  cos(x  + y)}}

 \blue{ \boxed{ \sf \:  {2sin}^{2}x = 1 - cos2x}}

 \blue{ \boxed{ \sf \: cos2n\pi = 1}}

 \blue{ \boxed{ \sf \: sin2n\pi = 0}}

 \blue{ \boxed{ \sf \: sin0 = 0}}

 \blue{ \boxed{ \sf \: cos0 = 1}}

 \blue{ \boxed{ \sf \: Fourier \: series \: of \: f(x) \: in \:  [ 0, 2\pi] \: is \: given \: by}}

\sf \: f(x) = \dfrac{a_0}{2} + \sum_{n=1}^{\infty}[a_n \cos(nx) + b_n \sin(nx)]

where,

 \blue{ \boxed{ \sf \: a_n = \frac{1}{\pi}\int_{0}^{2\pi}f(x) \cos(nx)\ dx}}

 \blue{ \boxed{ \sf \: b_n = \frac{1}{\pi}\int_{0}^{2\pi}f(x) \sin(nx)\ dx}}

 \blue{ \boxed{ \sf \: a_0 = \frac{1}{\pi}\int_{0}^{2\pi}f(x)\ dx}}

Please see the attachment for solution :-

After that

 \sf \: b_n = \dfrac{1}{2\pi} [\dfrac{cos2n\pi}{{(n-1)}^{2}} -\dfrac{cos0}{{(n-1)}^{2}}]-\dfrac{1}{2\pi}[\dfrac{cos2n\pi}{{(n+1)}^{2}} -\dfrac{cos0}{ {(n+1)}^{2}}]

 \sf \: b_n = \dfrac{1}{2\pi} [1 - 1]-\dfrac{1}{2\pi}[1 - 1]

 \sf \: b_n = \dfrac{1}{2\pi} [0]-\dfrac{1}{2\pi}[0]

\bf\implies \:b_n = 0 \:   \:  \:  \:  \:  \: n \ne \: 1

Hence,

 \sf \: Fourier \: series \: of \: f(x) = xsinx \: on \:  [ 0, 2\pi] \: is

 \sf \: f(x) = \dfrac{a_0}{2} +a_1 + b_1 \sum_{n=2}^{\infty}[a_n \cos(nx) + b_n \sin(nx)]

On substituting the values, we get

 \sf \: f(x) = \dfrac{ - 2}{2}-\dfrac{1}{2}  +\pi + \sum_{n=2}^{\infty}[ \dfrac{2}{ {n}^{2} - 1 }  \cos(nx) +0]

 \sf \: f(x) =  - 1-\dfrac{1}{2}  +\pi + \sum_{n=2}^{\infty}[ \dfrac{2}{ {n}^{2} - 1 }  \cos(nx)]

 \sf \: f(x) =  -\dfrac{3}{2}  +\pi + \sum_{n=2}^{\infty}[ \dfrac{2}{ {n}^{2} - 1 }  \cos(nx)]

Attachments:
Answered by ritikkumar269
12

Answer:

Expansion of f(x)=xsinx as Fourier series in (0,2\pi): f(x)=-\frac{3}{2}+\pi+\sum_{n=2}^{\infty}\left[\frac{2}{n^{2}-1} \cos (n x)\right]

Step-by-step explanation:

Fourier series- A Fourier series may be a sum using only basic waves chosen to mathematically represent the waveform for nearly any periodic function. These basic waves are sine and cosine waves whose frequency is an integer multiple of the fundamental of the periodic function.

Fourier series of $f(x)$ in $[0,2 \pi]$ is given by:

f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos (n x)+b_{n} \sin (n x)\right]

where,

$$\begin{aligned}&a_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) \cos (n x) d x \\&b_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) \sin (n x) d x \\&a_{0}=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) d x\end{aligned}$$

Step 1-

\begin{aligned}a_{0} &=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) d x \\&=\frac{1}{\pi} \int_{0}^{2 \pi} x \sin x d x \\&=\frac{1}{\pi}|-x \cos x+\left.\sin x\right|_{0} ^{2 \pi}\end{aligned}

Since,

\int x \sin x d x\right.&=x \int \sin x d x-\int\left(\frac{d}{d x} x \int \sin x d x\right) d x \\&\left.=-x \cos x-\int 1 \cdot \cos x\right) d x \\&=-x \cos x+\int \cos x d x \\&=-x \cos x+\sin x\\end{aligned}

\begin{aligned}&=\frac{1}{\pi}\{[-2 \pi \cos 2 \pi+\sin 2 \pi]-[0+\sin 0]\} \\&=\frac{1}{\pi}(-2 \pi+0) \\&=-2\end{aligned}

\therefore a_{0}=-2

Step 2-

\begin{aligned}a_{n} &=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) \cos n x d x \\&=\frac{1}{\pi} \int_{0}^{2 \pi} \cdot(x \sin x \cos n x) d x \\&=\frac{1}{2 \pi} \int_{0}^{2 \pi} x(2 {sin} x \cos n x) d x \\&=\frac{1}{2 \pi} \int_{0}^{2 \pi} x(\sin (1+n) x+\sin (1-n) x) d x \\&=\frac{1}{2 \pi} \int_{0}^{2 \pi} x(\sin (n+1) x-\sin (n-1) x) d x \\&=\frac{1}{2 \pi} \int_{0}^{2 \pi}[x \sin (n+1) x-x \sin (n-1) x] d x\end{aligned}

Now, by using By parts:

\begin{gathered}=\frac{1}{2 \pi}\left\{\left[\frac{-x \cos (n+1) x+\sin (n+1) x}{n+1}\right]_{0}^{2 \pi}-\left[\frac{-x \cos (n-1) x}{n-1}\right.\right\left.\left.+\frac{\sin (n-1) x}{(n-1)^{2}}\right]_{0}^{2 \pi}\right\}\end{gathered}

\begin{aligned}&=\frac{1}{2 \pi}\left[-2 \pi \frac{\cos (n+1) 2 \pi+0+2 \pi \cos (n-1) 2 \pi}{(n+1)}\right] \\&=\frac{2 \pi}{2 \pi}\left[-\frac{(-1)^{2}}{n+1}+\frac{(-1)^{2}}{n-1}\right]\end{aligned}

\begin{aligned}&=\left[-\frac{1}{n+1}+\frac{1}{n-1}\right] \\&=\left[-\frac{n+1+n+1}{(n+1)(n-1)}\right] \\&=\frac{2}{n^{2}-1} ; n \neq 1\end{aligned}

Calculate a_1:

\begin{aligned}a_{1} &=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) \cdot \cos x d x \\&=\frac{1}{\pi} \int_{0}^{2 \pi} x \sin x \cos x d x \\&=\frac{1}{2 \pi} \int_{0}^{2 \pi} x \sin 2 x d x \\&=\frac{1}{2 \pi}\left[-x \cos 2 x+\frac{\sin 2 x}{4}\right]_{0}^{2 \pi}\end{aligned}

\begin{aligned}&=\frac{1}{2 \pi}\left[-2 \pi \frac{\cos 4 \pi}{2}+0-0-0\right] \\&=\frac{1}{2 \pi}\left[-\pi(-1)^{4}\right] \\&=-\frac{1}{2}\end{aligned}

For n =1:

\begin{aligned}b_{1} &=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) \cdot \sin x d x \\&=\frac{1}{\pi} \int_{0}^{2 \pi} x \sin x \cdot \sin x d x \\&=\frac{1}{\pi} \int_{0}^{2 \pi} x \sin ^{2} x d x \\&=\frac{1}{\pi} \int_{0}^{2 \pi} x\left(\frac{1-\cos 2 x}{2}\right) d x \\&=\frac{1}{2 \pi} \int_{0}^{2 \pi}(x-x \cos 2 x) d x\end{aligned}

\begin{aligned}&=\frac{1}{2 \pi}\left[\frac{x^{2}}{2}-\left(x \sin 2 x+\frac{\cos 2 x}{4}\right)\right]_{0}^{2 \pi} \\&=\frac{1}{2 \pi}\left[\frac{4 \pi^{2}}{2}-0-\frac{1}{4}-0+0+\frac{1}{4}\right] \\&=\pi\end{aligned}

Step 3-

\begin{aligned}b_{n} &=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) \sin 2 \pi x \\b_{n} &=\frac{1}{\pi} \int_{0} x \sin x \sin n x d x \\&=\frac{1}{2 \pi} \int_{0}^{2 \pi} x \cdot(2 \sin x \sin x n) d x \\&=\frac{1}{2 \pi} \int_{0}^{2 \pi} x(\cos (n-1) x-\cos (n+1) x) d x\end{aligned}

=\frac{1}{2 \pi} \int_{0}^{2 \pi}(x \cos (n-1) x-x \cos (n+1) x) d x

\begin{aligned}&=\frac{1}{2 \pi}\left\{\left[\frac{x \sin (n-1) x}{n-1}+\frac{\cos (n-1) x}{(n-1)^{2}}\right]_{0}^{2 \pi}-\right&\left.\left[x \frac{\sin (n+1) x}{(n+1)}+\frac{{cos}(n+13 x}{(n+1)^{2}}\right]_{0}^{2 \pi}\right\}\end{aligned}

Now solve as shown in the image below:

Attachments:
Similar questions