expand f(x,y)=x^2y+siny+e^x in powers of (x-1) and(y-pi) through quadratic terms and find the remainder term
Answers
Hey Friend,
I don't know the answer but I know the formula
* This is a long essay*
Some other examples are in the images
Taylor Formula -:
Consider the function f(x, y). Recall that we can approximate f(x, y) with a linear function
in x and y:
f(x, y) ⇡ f(a, b) + fx(a, b) (x a) + fy(a, b) (y b)
Notice that again this is just a linear polynomial in two-variables that does a good job of
approximating f near the point (x, y)=(a, b). It’s also exactly the equation of the tangent
plane to the surface f at the point (a, b).
Example 53
Find the linear approximation to f(x, y) = xey at the point (0, 0).
We need evaluate the function and its first partial derivatives at the point (0, 0). We have
f = xey f (0, 0) = 0
fx = ey fx (0, 0) = 1
fy = xey fy (0, 0) = 0
Then the linear approximation is
f(x, y) ⇡ 0 + (1 · (x 0) + 0 · (y 0)) = x = L(x, y)
Example 54
Use L(x, y) to approximate f(x, y) = key at the point (0.05, 0.05) and find the error in
the approximation.
L(0.05, 0.05) = 0.05 f(0.05, 0.05) = 0.05e0.05 = 0.052564
|E(0.05, 0.05)| = |L(0.05.0.05) f(0.05, 0.05)| = 2.5 ⇥ 103
OK, that’s pretty good. But what if we need to do better? The linearization is the best
approximation by a linear polynomial of f(x, y) near the point (0, 0). It’s natural to ask if
we can get a better approximation if we use a quadratic polynomial.
It turns out that we can. The quadratic approximation of f(x, y) near the general point (a, b)
is given by
f(x, y) ⇡ f(a, b) + fx(a, b) (x a) + fy(a, b) (y b) +
1
2
⇥
fxx(a, b) (x a)
2 + 2fxy(a, b) (x a) (y b) + fyy(a, b) (y b)
2⇤
Notice that the first three terms in the approximation are just the linearization of f(x, y)
about the point (a, b). The additional terms are quadratic in x and y and involve the second
partial derivatives of f evaluated at the point (a, b).
Step-by-step explanation:
5rrdhhd6rigtdis48gfvxumg crs ues3
vuvxn gudtrus747rututstiss8587s37lt DCC ggghggggyyy discutiendo con el Alex me toca trabajar mañana i quiero mucho y te paso la ubicación por q no me gusta que me des 5Para pegar un clip en el cuadro de texto, tócalo.Para pegar un clip en el cuadro de texto, tócalo.Utiliza el ícono de edición para fijar, agregar o borrar cips:Para fijar un clip, manténlo presionado. Después de una hora, se borrarán todos los clips que no estén fijados.Para pegar un clip en el cuadro de texto, tócalo.Expand [x^2y+siny+e^x] in power of (x-1)&(y-pi)