Math, asked by apparaorv38, 11 months ago

Expand log 12√a*3 b*4c*2 as loga logb logc

Answers

Answered by guptasingh4564
3

The answer is 2log3+2log2+\frac{1}{2}loga+logb+3log2+logc

Step-by-step explanation:

Given,

Expend log(12\sqrt{a}\times 3b\times 4c\times 2)

log(12\sqrt{a}\times 3b\times 4c\times 2)

=log(12\sqrt{a})+log(3b)+log(4c)+log2

=log(3\sqrt{16a})+log3+logb+log4+logc+log2

=log3+log(16a)^{\frac{1}{2} } +log3+logb+log2^{2} +logc+log2

=log3+\frac{1}{2}log(16a)+log3+logb+2log2+logc+log2

=log3+\frac{1}{2}(log2^{4}+loga)+log3+logb+2log2+logc+log2

=2log3+\frac{1}{2}(4log2+loga)+logb+3log2+logc

=2log3+2log2+\frac{1}{2}loga+logb+3log2+logc

Hence, The answer is 2log3+2log2+\frac{1}{2}loga+logb+3log2+logc

Similar questions