expand log 128/625 with this formula log a power n=n log a
Answers
Answered by
10
hello friend,
log 128/625
log [(2^7)/(5^4)]
log 2^7 / log 5^4
7 log2 / 4log5
7log2 - 4log5
log 128/625
log [(2^7)/(5^4)]
log 2^7 / log 5^4
7 log2 / 4log5
7log2 - 4log5
Answered by
16
We know that,
log aⁿ = n log a
→log 128/625
→log x/y = log x-log y
So,log 128/625 = log 128 - log 625
128 = 2×2×2×2×2×2×2 = 2^7
625 = 5×5×5×5 = 5⁴
→log 128 - log 625
→log 2^7 - log 5⁴
log aⁿ = n log a
→7 log 2 - 4 log 5
Hope it helps
log aⁿ = n log a
→log 128/625
→log x/y = log x-log y
So,log 128/625 = log 128 - log 625
128 = 2×2×2×2×2×2×2 = 2^7
625 = 5×5×5×5 = 5⁴
→log 128 - log 625
→log 2^7 - log 5⁴
log aⁿ = n log a
→7 log 2 - 4 log 5
Hope it helps
Similar questions
English,
8 months ago
English,
8 months ago
Math,
8 months ago
Social Sciences,
1 year ago
Chemistry,
1 year ago