Math, asked by rohit8910, 1 year ago

expand log 243 to the base 3 root 3

Answers

Answered by MaheswariS
12

\textbf{Concept used:}

\textbf{Logarithmic notation}

\bf\;a^x=N\implies\;log_aN=x

\text{Let, }log_{3\sqrt3}243=x

\implies(3\sqrt3)^x=243

\implies(3\sqrt3)^x=3^5

\implies((\sqrt3)^3)^x=((\sqrt3)^2)^5

\implies(\sqrt3)^{3x}=(\sqrt3)^{10}

\text{Equating powers on both sides, we get}

3x=10

\implies\boxed{\bf\;x=\frac{10}{3}}

Find more:

log2 log2 log2 X=1

https://brainly.in/question/6856970#

Answered by ThinkingBoy
8

We need to know that

log_m(m^n) = n

log_m(ab) = log_ma+log_mb

This is the concept applied in the given problem

We have

243 = 3^5 = (3\sqrt3)^3*\sqrt3

Hence,  

log_{3\sqrt3}(243) = log_{3\sqrt3}(3\sqrt3)^3+log_{3\sqrt3}\sqrt3

= 3+\frac{1}{3}

= \frac{10}{3}

HOPE IT HELPS!!

Similar questions