Math, asked by bunnysai51, 11 months ago

expand log a2 b3/c4​

Answers

Answered by jitumahi435
0

Given:

\log \dfrac{a^2b^3}{c^4}

We have to expand the value of \log \dfrac{a^2b^3}{c^4} is:

Solution:

\log \dfrac{a^2b^3}{c^4}

Using the logarithm identity:

\log \dfrac{m}{n} = \log m - \log n

= \log (a^2b^3)-\log c^4

Using the logarithm identity:

\log mn = \log m + \log n

= \log a^2+\log b^3-\log c^4

Using the logarithm identity:

\log m^n = n\log m

= 2\log a+3\log b-4\log c

∴ The expandation of \log \dfrac{a^2b^3}{c^4}= 2\log a+3\log b-4\log c

Thus, the expandation of \log \dfrac{a^2b^3}{c^4}is equal to "2\log a+3\log b-4\log c".

Similar questions