Math, asked by JayadeepXVeera, 10 days ago

expand log ( m^3 n^4/ p^2 ) using the laws of lagorithm​

Answers

Answered by anindyaadhikari13
3

\textsf{\large{\underline{Solution}:}}

We have to expand the given logarithm.

 \rm = \log \bigg(  \dfrac{ {m}^{3} {n}^{4}  }{ {p}^{2} } \bigg)

We know that:

 \rm: \longmapsto \log \bigg( \dfrac{a}{b} \bigg) = \log(a) -  \log(b)

Therefore, we get:

 \rm = \log  ({m}^{3} {n}^{4}  ) -  log( {p}^{2} )

We know that:

 \rm: \longmapsto \log(ab) = \log(a) +  \log(b)

Therefore:

 \rm = \log  ({m}^{3}) + \log( {n}^{4}  ) -  log( {p}^{2} )

 \rm =3 \log  (m) + 4\log(n) -  2 \log(p)

Which is our required answer.

\textsf{\large{\underline{More To Know}:}}

 \rm 1. \:  \:  {a}^{n} = b \implies log_{a}(b)  = n

 \rm 2. \:  \: log_{a}(1)  = 0, \: a \neq0,1

 \rm 3. \:  \: log_{a}(a)  = 1, \: a \neq0,1

 \rm 4. \:  \: log_{a}(x)  = log_{a}(y) \implies x = y

 \rm 5. \:  \: log_{e}(x) =  ln(x)

 \rm6. \:  \:  log_{a}(x) + log_{a}(y) = log_{a}(xy)

 \rm7. \:  \:  log_{a}(x) - log_{a}(y) = log_{a} \bigg( \dfrac{x}{y} \bigg)

 \rm 8. \:  \: log_{a}( {x}^{n} ) =  n\log_{a}(x)

 \rm 9. \:  \:  log_{a}(m) =  \dfrac{ log_{b}(m) }{ log_{b}(a) },m > 0,b > 0,a \ne1,b \ne1

 \rm 10. \:  \: log_{a}(b) = \dfrac{1}{ log_{b}(a) }

Similar questions