expand
logp2q3 \div r4
Answers
Answered by
2
Answer:
Given:
\log \dfrac{p^2q^3}{r}logrp2q3
We have to expand the value of \log \dfrac{p^2q^3}{r}logrp2q3is:
Solution:
∴ \log \dfrac{p^2q^3}{r}logrp2q3
Using the logarithm identity:
\log \dfrac{a}{b}logba = \log aloga - \log blogb
= \log (p^2q^3)-\log rlog(p2q3)−logr
Using the logarithm identity:
\log ablogab = \log aloga + \log blogb
= \log p^2+\log q^3-\log rlogp2+logq3−logr
Using the logarithm identity:
\log a^mlogam = m\log amloga
= 2\log p+3\log q-\log r2logp+3logq−logr
∴ The expandation of \log \dfrac{p^2q^3}{r}logrp2q3 = 2\log p+3\log q-\log r2logp+3logq−logr
Thus, the expandation of \log \dfrac{p^2q^3}{r}logrp2q3 is equal to "2\log p+3\log q-\log r2logp+3logq−logr ".
Similar questions