Math, asked by Anonymous, 8 hours ago

Expand — (m + 2/3) (m - 7/3)

Answers

Answered by ᏞovingHeart
135

Expand\sf{ \bigg(m + \dfrac{2}{3}\bigg) \bigg(m - \dfrac{7}{3}\bigg)}

_

❖ Using the formula —

\dag \; \underline{\boxed{\sf{\purple{ (x+a)(x+b) = x^2 + (a+b)x + ab  }}}}

   

\implies \sf{ \bigg(m + \dfrac{2}{3}\bigg) \bigg(m - \dfrac{7}{3}\bigg)}

\implies \sf{(m)^3 + \bigg(\dfrac{+2}{3} \bigg)    \times   m + \bigg( \dfrac{+2}{3}\bigg) \times \bigg( \dfrac{-7}{3} \bigg) }

\implies \sf{m^2 + \bigg( \dfrac{ +2 - 7}{3} \bigg) \times m - \dfrac{14}{9}}

\implies \sf{m^2 + \bigg( \dfrac{-5}{3} \bigg) m - \dfrac{14}{9} }

\implies \sf{ m^2 - \dfrac{5}{3} - \dfrac{14}{9}}

     

Final Answer:

\implies \underline{\boxed{\sf{\orange{ \sf{ \bigg(m + \dfrac{2}{3}\bigg) \bigg(m - \dfrac{7}{3}\bigg)} = m^2 - \dfrac{5}{3} - \dfrac{14}{9}}}}}

___

* ⁺◦﹆◞˚ ꒰ More to know ꒱  

   

⬩ Related Algebraic Identities :  

  • (a + b)² = a² + 2ab + b²
  • (a - b)² = a² - 2ab + b²
  • (a + b) (a - b) = a² - b²
  • (a + b)³ = a³ + 3a²b + 3ab² + b³
  • (a - b)³ = a³ - 3a²b + 3ab² + b³
  • (a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ac
  • (x + a) (x + b) = x² + (a + b)x + ab
  • a³ + b³ = (a + b) (a² - ab + b²)
  • a³ - b³ = (a - b) (a² + ab + b²)

_____

Apologies for the mistakes <3

Similar questions