Math, asked by asndnnsslsldn4484, 4 days ago

Expand sin(A+B+C) and and and and tan(A+B+C)

Answers

Answered by NITESH761
1

Step-by-step explanation:

We know that,

\boxed{\rm \sin (α + β) = \sin α \cos β + \cos α \sin β}

\boxed{\rm \cos (α + β) = \cos α \cos β - \sin α \sin β}

\rm \sin (A + B+C) = \sin [(A+B)+C]

\rm  \sin [(A+B)+C]= \sin (A+B) \cos C + \cos (A+B) \sin C

\rm  = (\sin A \cos B+ \cos A \sin B ) \cos C + \cos (A+B) \sin C

\rm  = (\sin A \cos B+ \cos A \sin B ) \cos C + (\cos A \cos B- \sin A \sin B) \sin C

\rm  = \sin A \cos B \cos C+ \cos A \sin B  \cos C + \cos A \cos B \sin C- \sin A \sin B \sin C

\rm  = \cos A  \cos B \cos C ( \tan A + \tan B + \tan C -\tan A \tan B \tanC)

Similar questions