Math, asked by ƁƦƛƖƝԼƳƜƛƦƦƖƠƦ, 7 months ago

expand
 {(a + b)}^{2}

Answers

Answered by Anonymous
19

\huge \sf {\orange {\underline {\red{\underline{Answer :-}}}}}

 {(a + b)}^{2} = a2 - 2ab + b2.

Therefore,

(a + b)2 + (a - b)2

= a2 + 2ab + b2 + a2 - 2ab + b2.

Answered by Anonymous
5

 \color{yellow}{ \huge \underline{ \boxed{ \color{blue} \cal ANSWER}}}

 \large \underline{  \boxed{\bigstar \sf(A+B)²=A²+B²+2AB}}

‎ ‎ ‎ ‎ ‎ ‎

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

‎ ‎ ‎ ‎ ‎ ‎

\large \underline{ \boxed{ \sf \blue{ More \:  algeberic \:  identities}}}

\boxed{\begin{minipage}{7 cm}\boxed{\bigstar\:\:\textbf{\textsf{Algebric\:Identity}}\:\bigstar}\\\\1)\bf\:(A+B)^{2} = A^{2} + 2AB + B^{2}\\\\2)\sf\: (A-B)^{2} = A^{2} - 2AB + B^{2}\\\\3)\bf\: A^{2} - B^{2} = (A+B)(A-B)\\\\4)\sf\: (A+B)^{2} = (A-B)^{2} + 4AB\\\\5)\bf\: (A-B)^{2} = (A+B)^{2} - 4AB\\\\6)\sf\: (A+B)^{3} = A^{3} + 3AB(A+B) + B^{3}\\\\7)\bf\:(A-B)^{3} = A^{3} - 3AB(A-B) + B^{3}\\\\8)\sf\: A^{3} + B^{3} = (A+B)(A^{2} - AB + B^{2})\\\\\end{minipage}}

NOTE- Kindly Visit web to see formulae

Similar questions