Math, asked by avishalal98, 10 months ago

expand the following:-. ( 1/2x + 2/3y ) whole sq. 2​

Answers

Answered by MaheswariS
11

\textbf{Given:}

\mathsf{\left(\dfrac{1}{2x}+\dfrac{2}{3y}\right)^2}

\textbf{To expand:}

\mathsf{\left(\dfrac{1}{2x}+\dfrac{2}{3y}\right)^2}

\textbf{Solution:}

\textbf{Identity used:}

\boxed{\begin{minipage}{5cm}$\\\mathsf{\;\;\;\;(a+b)^=a^2+2\,ab+b^2}\\$\end{minipage}}

\mathsf{Consider,}

\mathsf{\left(\dfrac{1}{2x}+\dfrac{2}{3y}\right)^2}

\textsf{Using the above identity,}

\mathsf{=\left(\dfrac{1}{2x}\right)^2+2{\times}\dfrac{1}{2x}{\times}\dfrac{2}{3y}+\left(\dfrac{2}{3y}\right)^2}

\mathsf{=\left(\dfrac{1}{2x}\right)^2+\dfrac{1}{x}{\times}\dfrac{2}{3y}+\left(\dfrac{2}{3y}\right)^2}

\mathsf{=\dfrac{1}{4x^2}+\dfrac{2}{3xy}+\dfrac{4}{9y^2}}

\implies\boxed{\mathsf{\left(\dfrac{1}{2x}+\dfrac{2}{3y}\right)^2=\dfrac{1}{4x^2}+\dfrac{2}{3xy}+\dfrac{4}{9y^2}}}

\textbf{Find more:}

Factorise: -

x^8+x^4/16+1/256

https://brainly.in/question/17290261

Answered by ADITYABHAIYT
8

( \frac{1}{2} x +  \frac{2}{3} y) {}^{2}  \\  \\  =  > ( \frac{1}{2} x) {}^{2}  + ( \frac{2}{3} y ) {}^{2}  + 2 \times  \frac{1}{2} x \times  \frac{2}{3} y \\  \\  =  >  \frac{1}{4} x {}^{2}  +  \frac{4}{9} y {}^{2}  +  \frac{2}{3} xy

Attachments:
Similar questions