Math, asked by dinkark76, 3 months ago

expand the following ​

Attachments:

Answers

Answered by Anonymous
418

Solution:-

 \bigg( \frac{2a}{5b}  -  \frac{5b}{2a} \bigg) {}^{ {}^{ {}^{ {}^{ 2} } } } \\  \\  \\  \implies \small{ \:   \bigg( \frac{2a}{5b}  \bigg) {}^{ {}^{ {}^{ {}^{2} } } }  - 2a \times  \frac{2a}{5b}  \times  \frac{5b}{2a} +   \bigg(\frac{5b}{2a} \bigg)  {}^{2} } \\  \\  \\ \sf \: Formula:-  \\  \\  \boxed{  (a - b) {}^{2} =  {a}^{2}   - 2ab +  {b}^{2}  }\\  \\  \\   \implies \:  \frac{4a {}^{2} }{25 {b}^{2}   }  - 2 +  \frac{25 {b}^{2} }{4 {a}^{2} }

Answered by hemanthkumar76
23

Answer:

 \frac{4 {a}^{2} }{25 {b}^{2} }  +  \frac{25 {b}^{2} }{4 {a}^{2} }  - 2

Step-by-step explanation:

We will use a algebraic formula:

(a - b)² = a² + b² -2 x a x b

Here, \: a =  \frac{2a}{5b} ; b  =  \frac{5b}{2a}

 {( \frac{2a}{5b}  -  \frac{5b}{2a} )}^{2}   =  {( \frac{2a}{5b} )}^{2}  +  { (\frac{5b}{2a}) }^{2}  - 2 \times  \frac{2a}{5b}  \times   \frac{5b}{2a}

  = \frac{4 {a}^{2} }{25 {b}^{2} }  +  \frac{25 {b}^{2} }{4 {a}^{2} }  - 2

Similar questions