Math, asked by simranpatil1717, 2 months ago

expand the following ​

Attachments:

Answers

Answered by Krishrkpmlakv
3

Answer:

Step-by-step explanation:

Attachments:
Answered by 12thpáìn
6

\:  \:  \:  \:  \:  \mapsto \sf{{ \left( \dfrac{3x}{4}  +  \dfrac{2y}{5}  \right) }^{3} }

  •  \small \sf{By  \: Using  \: Identity } \: _{  \bf\gray{ \scriptsize(a+b)^{3} =a³+b³+3ab(a+b)}}

{\:  \:  \:  \:  \:  \mapsto \sf{ \left( \dfrac{3x}{4}   \right) }^{3} + \left(\dfrac{2y}{5} \right) ^{3}  + 3 \times\dfrac{3x}{4}   \times\dfrac{2y}{5}\left( \dfrac{3x}{4}    + \dfrac{2y}{5} \right) }

{\:  \:  \:  \:  \:  \mapsto \sf{  \dfrac{ {(3x)}^{3} }{ {4}^{3} }   } + \dfrac{ {(2y)}^{3} }{ {5}^{3} }   + 3 \times\dfrac{3x}{ \cancel4}   \times\dfrac{ \cancel2y}{5}\left( \dfrac{15x + 8y}{20}    \right) }

{\:  \:  \:  \:  \:  \mapsto \sf{  \dfrac{ 27 {x}^{3}  }{ 64 }   } + \dfrac{ 8 {y}^{3}  }{ 125 }   +  \dfrac{9xy}{10} \left( \dfrac{15x + 8y}{20}    \right) }

{\:  \:  \:  \:  \:  \mapsto \sf{  \dfrac{ 27 {x}^{3}  }{ 64 }   } + \dfrac{ 8 {y}^{3}  }{ 125 }   +    \dfrac{135 {x}^{2} y + 72x {y}^{2} }{200}   }

{\:  \:  \:  \:  \:  \mapsto \sf{  \dfrac{ 27 {x}^{3}  }{ 64 }   } + \dfrac{ 8 {y}^{3}  }{ 125 }   +    \dfrac{135 {x}^{2} y}{200} +  \dfrac{72x {y}^{2} }{200}  }

{\:  \:  \:  \:  \:  \mapsto \sf{  \dfrac{ 27 {x}^{3}  }{ 64 }   } + \dfrac{ 8 {y}^{3}  }{ 125 }   +    \dfrac{27 {x}^{2} y}{40} +  \dfrac{9x {y}^{2} }{25}  } \\\\

\green{\boxed{\therefore~~ \sf{{ \left( \dfrac{3x}{4}  +  \dfrac{2y}{5}  \right) }^{3} }{=  \blue{\bf{  \dfrac{ 27 {x}^{3}  }{ 64 }   } + \dfrac{ 8 {y}^{3}  }{ 125 }   +    \dfrac{27 {x}^{2} y}{40} +  \dfrac{9x {y}^{2} }{25} } }}}

\pink{\begin{gathered}\tiny\begin{gathered}\small{\small{\small{\small{\small{\small{\small{\small{\small{\small{\begin{gathered}\begin{gathered}\begin{gathered}\\\\\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\red{ \bigstar} \: \underline{\bf{\orange{More \: Useful \: Formula}}}\\ {\boxed{\begin{array}{cc}\dashrightarrow \sf(a + b)^{2} = {a}^{2} + {b}^{2} + 2ab \\\\\dashrightarrow \sf(a - b)^{2} = {a}^{2} + {b}^{2} - 2ab \\\\\dashrightarrow \sf(a + b)(a - b) = {a}^{2} - {b}^{2} \\\\\dashrightarrow \sf(a + b) ^{3} = {a}^{3} + b^{3} + 3ab(a + b) \\\\ \dashrightarrow\sf(a - b) ^{3} = {a}^{3} - b^{3} - 3ab(a - b) \\ \\\dashrightarrow\sf a ^{3} + {b}^{3} = (a + b)(a ^{2} + {b}^{2} - ab) \\\\\dashrightarrow \sf a ^{3} - {b}^{3} = (a - b)(a ^{2} + {b}^{2} + ab \\\\\dashrightarrow \sf{a²+b²=(a+b)²-2ab}\\ \end{array}}}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}}}}}}}}}}}\end{gathered}\end{gathered}}

Plz Mark at Brainlist ❤️

Similar questions