Math, asked by Anonymous, 4 months ago

expand the following (4a-2b+3c)^2​

Answers

Answered by Anonymous
2

\mathbb{\bold{\underline{ANSWER}}}

\fbox{\textsf{16a$^{\textsf{2}}$ + 4b$^{\textsf{2}}$ + 9c$^{\textsf{2}}$ -16ab -12bc + 24ac}}

\mathbb{\bold{\underline{EXPLANATION:}}}

\star \textsf{ Expression Given : \textbf{(4a - 2b + 3c)$^{\textbf{2}}$}}

\star \to \textsf{(4a - 2b + 3c)$^{\textsf{2}}$ = [4a + (-2b) + 3c]$^{\textsf{2}}$}

  \bullet \textbf{ Using the identity: (a + b + c)$^{\textbf{2}} = $a$^{\textbf{2}}$ + b$^{\textbf{2}}$ + c$^{\textbf{2}}$ + 2ab + 2bc + 2ca}\star \texttt{ a = 4a}

\star \texttt{ b = -2b}

\star \texttt{ c = 3c}

\textsf{Substituting the values in a$^{\textsf{2}}$ + b$^{\textsf{2}}$ + c$^{\textsf{2}}$ + 2ab + 2bc + 2ca, we get :}}

\star \to \textsf{[(4a)$^{\textsf{2}}$ + (-2b)$^{\textsf{2}}$ + (3c)$^{\textsf{2}}$ + (2 x 4a x -2b) + (2 x -2b x 3c) + (2 x 3c x 4a)] }

\to \textsf{16a$^{\textsf{2}}$ + 4b$^{\textsf{2}}$ + 9c$^{\textsf{2}}$ + (-16ab) + (-12bc) + (24ac)}

\textsf{= 16a$^{\textsf{2}}$ + 4b$^{\textsf{2}}$ + 9c$^{\textsf{2}}$ -16ab -12bc + 24ac}

\therefore \textbf{(4a - 2b + 3c)$^{\textbf{2}}$ = 16a$^{\textsf{2}}$ + 4b$^{\textsf{2}}$ + 9c$^{\textsf{2}}$ -16ab -12bc + 24ac}

Similar questions