Math, asked by gptr97, 1 month ago

expand the following (5-4/y)^4 by binomial theorem​

Attachments:

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

 \tt{ \green{ \bigg( 5 - \dfrac{4}{y} \bigg)^{4} }}

 \sf{  =   \:^{4}C_{0}(  5) ^{4} -\:^{4}C_{1}(  5) ^{3} \cdot\bigg(\dfrac{4}{y} \bigg) + \:^{4}C_{2}(  5) ^{2} \cdot\bigg(\dfrac{4}{y} \bigg) ^{2}  - \:^{4}C_{3}(  5)\cdot\bigg(\dfrac{4}{y} \bigg)^{3} +\:^{4}C_{4} \cdot\bigg(\dfrac{4}{y} \bigg) ^{4}  }

 \sf{  =   625 -4(125)  \cdot\bigg(\dfrac{4}{y} \bigg) + 6(25) \cdot\bigg(\dfrac{16}{y ^{2} } \bigg) - 4(5)\cdot\bigg(\dfrac{64}{y^{3} } \bigg) +\bigg(\dfrac{256}{y^{4} } \bigg)   }

 \sf{  =   625 -\dfrac{2000}{y}  + \dfrac{2400}{y ^{2} } - \dfrac{1280}{y^{3} }+\dfrac{256}{y^{4} }    }

Similar questions