expand the following by using identities 1) (3a-2b)²
2) (3x+5y)
3) (3x-5y)
Answers
Identity:
An identity is an equality which is true for all values of a variable in the equality.
(a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca
In an identity the right hand side expression is called expanded form of the left hand side expression.
----------------------------------------------------------------------------------------------------
Solution:
i)
(x + 2y + 4z)²
Using identity,
(a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca
Here, a = x, b = 2y and c = 4z
(x + 2y + 4z)²
= x² + (2y)² + (4z)²² + (2×x×2y) + (2×2y×4z) + (2×4z×x)
= x² + 4y² + 16z²+ 4xy + 16yz + 8xz
(ii) (2x – y + z)²
Using identity,
(a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca
Here, a = 2x, b = –y & c = z
(2x – y + z)²
= (2x)² + (-y)² + z² + (2×2x×-y) + (2×-y×z) + (2×z×2x)
= 4x² + y² + z² – 4xy – 2yz + 4xz
(iii) (–2x + 3y + 2z)²
Using identity=
(a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca
Here, a = -2x, b = 3y & c = 2z
(–2x + 3y + 2z)²
= (-2x)² + (3y)²+ (2z)² + (2×-2x×3y) + (2×3y×2z)+ (2×2z×-2x)
= 4x² + 9y² + 4z² – 12xy + 12yz – 8xz
(iv) (3a – 7b – c)²
Using identity,
(a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca
Here, a = 3a, b,= -7b &c = -c
(3a – 7b – c)²
= (3a)² + (-7b)²+ (-c)² + (2×3a×-7b) + (2×-7b×-c) + (2×-c×3a)
= 9a² + 49b² + c² – 42ab + 14bc – 6ac
(v) (–2x + 5y – 3z)²
Using identity,
(a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca
Here, a = -2x, b = 5y and c = -3z
(–2x + 5y – 3z)²
= (-2x)² + (5y)² + (-3z)² + (2×-2x×5y) + (2×5y×-3z) + (2×-3z×-2x)
= 4x² + 25y² + 9z²– 20xy – 30yz + 12xz
(vi) [1/4 a – 1/2 b + 1]²
Using identity,
(a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca
Here, a = a/4 , b = -b/2 & c = 1
[1/4 a – 1/2 b + 1]²
=(a/4)²+(-b/2 )²+1²+ (2×a/4 ×-b/2)+(2×-b/2 ×1) + (2×1×a/4)
= a²/16+ b²/4+ 1 – ab/4– b + a/2
=========================================================
Hope it helps
:)
Answer:
Use identiti
:
Mark me as BRAINLIEST