Expand the following
cosec270
Answers
Answered by
0
What are the relations among all the trigonometrical ratios of (270° + θ)?
In trigonometrical ratios of angles (270° + θ) we will find the relation between all six trigonometrical ratios.
We know that,
sin (90° + θ) = cos θ
cos (90° + θ) = - sin θ
tan (90° + θ) = - cot θ
csc (90° + θ) = sec θ
sec ( 90° + θ) = - csc θ
cot ( 90° + θ) = - tan θ
and
sin (180° + θ) = - sin θ
cos (180° + θ) = - cos θ
tan (180° + θ) = tan θ
csc (180° + θ) = -csc θ
sec (180° + θ) = - sec θ
cot (180° + θ) = cot θ
Using the above proved results we will prove all six trigonometrical ratios of (180° - θ).
sin (270° + θ) = sin [1800 + 90° + θ]
= sin [1800 + (90° + θ)]
= - sin (90° + θ), [since sin (180° + θ) = - sin θ]
Therefore, sin (270° + θ) = - cos θ, [since sin (90° + θ) = cos θ]
cos (270° + θ) = cos [1800 + 90° + θ]
= cos [I 800 + (90° + θ)]
= - cos (90° + θ), [since cos (180° + θ) = - cos θ]
Therefore, cos (270° + θ) = sin θ, [since cos (90° + θ) = - sin θ]
tan ( 270° + θ) = tan [1800 + 90° + θ]
= tan [180° + (90° + θ)]
= tan (90° + θ), [since tan (180° + θ) = tan θ]
Therefore, tan (270° + θ) = - cot θ, [since tan (90° + θ) = - cot θ]
csc (270° + θ) = 1sin(270°+Θ)1sin(270°+Θ)
= 1−cosΘ1−cosΘ, [since sin (270° + θ) = - cos θ]
Therefore, csc (270° + θ) = - sec θ;
sec (270° + θ) =1cos(270°+Θ)1cos(270°+Θ)
= 1sinΘ1sinΘ, [since cos (270° + θ) = sin θ]
Therefore, sec (270° + θ) = csc θ
and
cot (270° + θ) = 1tan(270°+Θ)1tan(270°+Θ)
= 1−cotΘ1−cotΘ, [since tan (270° + θ) = - cot θ]
Therefore, cot (270° + θ) = - tan θ.
Solved examples:
1. Find the value of csc 315°.
Solution:
csc 315° = sec (270 + 45)°
= - sec 45°; since we know, csc (270° + θ) = - sec θ
= - √2
2. Find the value of cos 330°.
Solution:
cos 330° = cos (270 + 60)°
= sin 60°; since we know, cos (270° + θ) = sin θ
= √32
In trigonometrical ratios of angles (270° + θ) we will find the relation between all six trigonometrical ratios.
We know that,
sin (90° + θ) = cos θ
cos (90° + θ) = - sin θ
tan (90° + θ) = - cot θ
csc (90° + θ) = sec θ
sec ( 90° + θ) = - csc θ
cot ( 90° + θ) = - tan θ
and
sin (180° + θ) = - sin θ
cos (180° + θ) = - cos θ
tan (180° + θ) = tan θ
csc (180° + θ) = -csc θ
sec (180° + θ) = - sec θ
cot (180° + θ) = cot θ
Using the above proved results we will prove all six trigonometrical ratios of (180° - θ).
sin (270° + θ) = sin [1800 + 90° + θ]
= sin [1800 + (90° + θ)]
= - sin (90° + θ), [since sin (180° + θ) = - sin θ]
Therefore, sin (270° + θ) = - cos θ, [since sin (90° + θ) = cos θ]
cos (270° + θ) = cos [1800 + 90° + θ]
= cos [I 800 + (90° + θ)]
= - cos (90° + θ), [since cos (180° + θ) = - cos θ]
Therefore, cos (270° + θ) = sin θ, [since cos (90° + θ) = - sin θ]
tan ( 270° + θ) = tan [1800 + 90° + θ]
= tan [180° + (90° + θ)]
= tan (90° + θ), [since tan (180° + θ) = tan θ]
Therefore, tan (270° + θ) = - cot θ, [since tan (90° + θ) = - cot θ]
csc (270° + θ) = 1sin(270°+Θ)1sin(270°+Θ)
= 1−cosΘ1−cosΘ, [since sin (270° + θ) = - cos θ]
Therefore, csc (270° + θ) = - sec θ;
sec (270° + θ) =1cos(270°+Θ)1cos(270°+Θ)
= 1sinΘ1sinΘ, [since cos (270° + θ) = sin θ]
Therefore, sec (270° + θ) = csc θ
and
cot (270° + θ) = 1tan(270°+Θ)1tan(270°+Θ)
= 1−cotΘ1−cotΘ, [since tan (270° + θ) = - cot θ]
Therefore, cot (270° + θ) = - tan θ.
Solved examples:
1. Find the value of csc 315°.
Solution:
csc 315° = sec (270 + 45)°
= - sec 45°; since we know, csc (270° + θ) = - sec θ
= - √2
2. Find the value of cos 330°.
Solution:
cos 330° = cos (270 + 60)°
= sin 60°; since we know, cos (270° + θ) = sin θ
= √32
Answered by
2
Hlo FRIEND^_^
Ans___
>> cosec 270 <<<<
cosec 270
cosec(270-0)
cosec(3*90-0)
sec 0
So the value of sec0 digree is 1..
hope its help u my friend____^_^ si mark me as the BRAINLIST___:-)
Ans___
>> cosec 270 <<<<
cosec 270
cosec(270-0)
cosec(3*90-0)
sec 0
So the value of sec0 digree is 1..
hope its help u my friend____^_^ si mark me as the BRAINLIST___:-)
Solved:
where r u ??
Similar questions